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Abstract

A fast nonlinear filtering algorithm is presented. This algorithm propagates
the entire conditional probability functions recursively in a computationally ef-
ficient manner using the discrete wavelet transform. With the multiresolution
analysis capability offered by the wavelet transform we can speed up the compu-
tation by ignoring the high-frequency details of the probability function up to a
certain level.

Keywords: Wavelet transform, nonlinear filtering, conditional probability
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1 Introduction

The most fundamental approach of finding the value of the random state of stochas-
tic dynamical system would be compute the conditional probability density functions
(conditioned on all previous measurement data) of the state. The formulas for the
conditional probability density function are quite simple and are derivable as an exer-
cise of the Bayes’ formula. The computational burden, however, of finding the entire
probability density function numerically during every brief measurement time interval
is formidable.

If the dynamical system is linear and the underlying processes are Gaussian then
the state estimate remains to be a Gaussian random vector which is completely deter-
mined by its mean and covariance matrix only. Indeed the Kalman filter [1] computes
the mean and the covariance matrix recursively for a linear system. Most real systems
are however nonlinear, and a standard approach is to resort to the extended Kalman
filter which employs certain linearization before applying the Kalman filter. Unfortu-
nately, this linearization is not always satisfactory, and various direct nonlinear filtering
algorithms have been proposed by many researchers [2], [3]. The trade-off between the
computational speed and the accuracy has been always a major consideration in choos-
ing a nonlinear filtering algorithm.

In this paper we consider an approach of representing and recursively generat-
ing approximation to the conditional probability density function using the wavelet
transform [4]. The center idea is to recognize that the conditional probability den-
sity function waveform may be an excellent approximation to the original conditional
probability density function.

The problem is defined in section 2 and the filtering algorithm as presented in
section 3.
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2 The nonlinear filtering problem

The basic problem addressed in this paper is to find the conditional probability density
function of the state vector x(k) ∈ Rn which according to the discrete-time nonlinear
system model:

x(k + 1) = f(x(k), k) + u(k), (1)

given the entire measurement history Yk = [y(1), y(2), ..., y(k)], where

y(k) = h(x(k)) + v(k), (2)

where y(k) ∈ Rp. Here, f and h are real, possibly nonlinear, vector-valued vector
functions. The probability density function px(0)(x) of the uncertain initial state x(0)
is assumed to be known. The process noise u(k) and the measurement noise v(k) are
modeled as the independent random vectors with known probability density functions
pu(k)(x) and pv(k)(x) respectively. Here px(0)(x), pu(k)(x) and pv(k)(x) are not necessary
Gaussian.

It is not difficult to show that the predicted conditional density function px(k+1)|Yk
(x)

and filtered conditional density function px(k+1)|Yk+1
(x) can be obtained recursively

starting from px(0)(x) = px(0)|y0(x) using

px(k+1)|yk
(x) =

∞∫
−∞

pu(k)(x− f(y, k))px(k)|yk
(y)dy, (3)

px(k+1)|yk+1
(x) =

1

c
pv(y(k + 1) − h(x))px(k+1)|yk

(x), (4)

where c is the normalizing constant. Recursions 3 and 4 will be called the time- and
the measurement-update, respectively.

3 Approximation of the time-update using the

wavelet transform

With the simpler notations of r(·) = pu(k)(·) and q(·) = px(k)|yk
(·) 3 can be rewritten as

an n-dimensional convolution operation.

px(k+1)|yk
(x) =

∞∫
−∞

r(x− b)s(b)db, (5)

where b = f(y, k), f−1
1 (b) = y, s(b) = q(f−1

1 (b))
∣∣det∂y

∂b

∣∣, assuming that f(·, k) is a
monotonic continuously differentiable function.

The convolution operation is the time-update 5 is computationally intensive. We
shall show how to approximate the probability density functions r(·) and s(·) in 5
using the wavelet transformation to speed up the computation. We shall consider only
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the case when x(k) in 1 is a scalar, i.e. n = 1 for the simplicity. The first step is to
discretize the density function r(·) and s(·) {ri}N−1

i=0 and {si}N−1
i=0 . Then the continuous-

domain convolution in 5 can be approximated with a discrete-domain convolution, i.e.
N−1∑
k=0

ri−ksk.

The central limit theorem says that if a large number of functions are convolved
together the resultant may be very smooth and as the number increases indefinitely
the resultant may be approach to the Gaussian form. Recursion in 3 and 4 may be
viewed as convolution operations and we may expect that the predicted conditional
probability density function are are very smooth. Now a smooth function contains
little high-frequency components and can be approximated with the approximation
waveform at a higher level of the wavelet transform.

The operation
N−1∑
l=0

ri−lsl can be represented as the matrix-vector product R · g,
where

g = [g0, g1, ..., gN−1]
T ,

R = [r, Zr, Z2r, ..., ZN−1r]T ,

r = [r0, r1, ..., rN−1]
T ,

Z =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 0
1 0 . . . 0 0
...

. . .

0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎦− (N ×N −matrix).

Let {r(k)
i }N−1

i=0 , {g
(k)
i }N−1

i=0 , k = 0, 1, ... be the discrete sequence of the functions:

r
(0)
j = pu(0)(xj), g

(0)
j = px(0)(xj),

r
(1)
j = pu(1)(xj), g

(1)
j =

N−1∑
l=0

r
(1)
j−lg

(0)
l ,

. . . . . . . . . . .

r
(k)
j = pu(k)(xj), g

(k)
j =

N−1∑
l=0

r
(1)
j−kg

(k−1)
l ,

Wavelet-analysis begins with [5]

a
(k)
0,m := r(k)

m , a
(k)
0,m := g(k)

m , m = 0, N − 1, k = 0, 1, ...

a
(k)
j,n =

∑
l

hla
(k)
j−1,2k+l,

d
(k)
j,n =

∑
l

plaj−1,2n+l, j = 1, J,

where {h̄l}, {p̄l} – the sequence, defined by the wavelet-function.

213



{d(k)
j,n}, j = J, J < N , the coefficients of wavelet-decomposition of the {r(k)

m }. The

same formulas are obtained for {ā(k)
0,m} = g

(k)
m .

The formula of synthesis is following

a
(k)
j−1,n =

∑
l

hn−2la
(k)
j,l +

∑
l

pn−2ld
(k)
j,l . (6)

For the concrete calculations we need the table of the values {hl}, {pl}.

4 Simulation results

We shall consider the following nonlinear system:

x(l + 1) = 0.5x(l) + 2 cos (1.2l) + u(l),

y(l) =
x2(l)

20
+ v(l),

where u(l) ∼ N (0; 0.5), v(l) ∼ N (0; 0.1), E{x(0)} = 10, px(0)|y0(x) ∼ 0.5N (−4; 5) +
0.5N (10; 2).

The table of the values {hk}, {pk} corresponds to the Daubeshies wavelet, ψ(x) [6].

k 0 1 2 3 4 5
hk 0.33267 0.80689 0.45988 -0.13501 -0.08544 0.03522

pk = (−1)kh5−k 0.03523 0.08544 -0.13501 0.45988 0.80689 -0.33267

The results of the simulation are following:

k 0 1 2 3 4 5 6 7 8 9 10
x(k) 12 9 0 -0.5 0 0.2 2 1.8 0.1 -2 -1
x̂(k) 10 11 2 0 -2 0 1.8 1.7 0.1 -2.1 -1.2

This results shows the efficiency of the given approach.
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