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Abstract

The problem of estimation of an unknown shape parameter under the sample
drawn from the gamma distribution, where the scale parameter is also unknown,
is considered. A new estimator, called the maximum likelihood scale invariant
estimator, is proposed. It is established that the mean square error of this estima-
tor is less than that of the usual maximum likelihood estimator. The asymptotics
of the mean square error of the new estimator is also obtained.

1 Introduction

Let a sample x = (21,29, ...,%,) be drawn from the gamma distribution I'(«, o) with
an unknown shape parameter > 0 and an unknown scale parameter ¢ > 0, whose
density function has the form

ua—le—u/a

p(U;@,U):W, U>0

Consider the problem of estimation of a. One of the most popular estimator is
the well-known maximum likelihood estimator (ML-estimator) (e.g. [2, Sections 9.3,
9.4], [3], [4], [5]). Let

p(z;0,0) = 0_”“(F(a))_"(ﬁ ;)% exp (— i wk/ff)

be the corresponding likelihood function. The ML-estimators of v and o are determined

by the equations:
Ino+¥(a) =37 Inz;/n,

@ =3 gy 2k/(no) = 0,

where ¥(a) = (InT'(«))" is the so-called Euler psi (digamma) function.
From those equations one can obtain the ML-estimators a* and ¢*. Namely, o* is
the root of the equation g(«) = T'(z), where

1 n
—lna—V T@) =z - =Y Iz,
gla) =Ina (), (x) =Inz "L nz,
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Here, z is the sample mean, i.e.

3

T = T .

k=1

S|

Observe that the function g is strictly decreasing and takes values in (0, 00) (e.g. The-
orem 1 of [1]). Therefore, the estimator a* is well-defined and unique. This estimator
is also scale invariant. Furthermore, one can easily see that ET(x) = g, («), where

gn() = g(@) — g(na) = ¥(na) — ¥(a) — Inn.
The question arises: why don’t one takes the root of the equation

gn(@) =T () (1)

as an estimator of an unknown shape parameter o7

It turns out that such a choice has quite a deep reasoning. Since in our scheme o
becomes a nuisance parameter, it is natural to apply the maximum likelihood principle
to the measure defined on the g-algebra of the scale invariant sets generated by the
underlying gamma distribution. As it is known (e.g. [6, Section 8.3]), the density
corresponding to this measure, with respect to that generated by the standard normal
distribution, is given as follows:
Jo t"'p(taya,0)dt 200 (na) (7, )" (T, )"

[t s(ta)dt L(n/2)T(a)" (s, z)m

q(z; o) =

where
1 n
_ —n/2 2
s(u) = (2m) """ exp (—5 kg_l uk> .

Then by direct calculations one can obtain that the maximum likelihood scale invariant
estimator (IML-estimator) o € argmax,~oq(z;a) is the root of equation (1).

Of course, the estimator o** is scale invariant, well-defined and unique since the
function g, is strictly decreasing and takes values in (0, 00).

The goal of this paper is to compare two estimators of a: the ML-estimator and the
IML-estimator. Taking as a measure of the estimator quality it’s mean square error,
we show that the IML-estimator a** is better than the ML-estimator a*.

2 Main results

Denote
R: = E(a* — a)?, R* = E(a™ — a)*

n

Theorem 1. If a sample © = (x1,2a, ..., x,) is drawn from I'(«, o) distribution, then
the IML-estimator o** is better than the ML-estimator o*, i.e. R)* < Ry.
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Remark. From the proof of Theorem 1 it follows that a* > o for any sample x and
that Ea™ > a for any a > 0. We apply the Monte-Carlo simulation to confirm those
facts. Given « and o, we generate 10000 samples drawn from I'(a, o) distribution for
n = 10, 20, 30, 50, 100. Next, we solve numerically two equations: g(«a) = T'(x)
and g,(a) = T'(z) with respect to «, and obtain 10000 values of o* and o**. Taking
their means, we get Fa* and Fa™ and calculate R; and R;*. The results are given in
Table 1.

| o =0.125 | a=05 |
n  Eof Eo™ R* R Eo*  Ea™ R* R

10 0.1533  0.1435 0.0048  0.0038 | 0.5571 0.5325 0.0320 0.0308
20 0.1372  0.1331 0.0014  0.0013 | 0.5473 0.5303 0.0219 0.0198
30 0.1330  0.1304  0.00082 0.00076 || 0.5367 0.5248 0.0152 0.0139
50  0.1298 0.1283 0.00042 0.00040 || 0.5225 0.5153 0.0089 0.0083
100 0.1272 0.1265 0.00019 0.00018 || 0.5108 0.5073  0.0038 0.0037
| a=1 H a= |
n Ear Ea** Ry R Eao* Ea™ Ry Ry

10 1.1228 1.0733 0.1324  0.1261 | 2.2330 2.1222 0.5351 0.5024
20 1.1030 1.0667 0.0977  0.0892 | 2.2169 2.1406 0.4159 0.3824
30 1.0807 1.0543 0.0701  0.0644 | 2.1718 2.1141 0.3122 0.2861
50  1.0505 1.0342 0.0395  0.0369 | 2.1179 2.0817 0.1866 0.1738
100 1.0277 1.0197 0.0182  0.0175 | 2.0511 2.0333 0.0795 0.0765
‘ a=4 H a=38 ‘
n Eao* Ea* Ry Ry Eao* Ea™ Ry Ry

10 4.4238 4.1880 2.1022  1.9780 | 8.9147 8.4528 8.7071 8.2858
20 4.4220 4.2628 1.7076  1.5750 || 8.8514 8.5149 6.9795 6.3896
30 4.3624  4.2398 1.2980  1.1853 || 8.7067 8.4591 5.3588 4.9447
50  4.2595  4.1809 0.7973  0.7353 | 8.4543 8.2935 3.1421 29171
100 4.1121 4.0740 0.3375  0.3240 | 8.2298 8.1507 1.4218 1.3644
| a =16 | o = 32 |
n Ear Ea** Ry R Eao* Ea™ Ry Ry
10 17.78 16.92 34.35 33.87 35.51 33.60  138.39 131.67
20 17.79 17.11 28.88 26.44 35.50 34.18  115.15 106.82
30 17.52 16.99 21.99 19.83 34.91 33.88 86.39  79.42
50  17.01 16.69 13.30 12.47 33.95 33.29 52.90  49.18
100 16.49 16.36 5.80 5.56 33.03 32.71 2431  23.28

Table 1: Numerical calculations of Ea*, Ea™, R}, R'*.

In the next theorem we establish the asymptotics of the mean square error of
the maximum likelihood scale invariant estimator with respect to that of the usual
maximum likelihood estimator.
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Theorem 2. If a sample x = (x1,x9,...,2,) is drawn from U'(«, o) distribution, then

n*(R: — R¥) = §D(oz) +o(1), n — oo

4
where . W(a) + 2070 (0)
+ oV (a) + 2a «Q
D =— > 0.
) @) — 1
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