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Abstract

This paper investigates robustness of the multivariate Bayesian forecasting
model under the chi-square metric distortions of priors. The explicit form for
the guaranteed upper risk is obtained and an integral equation for the robust
prediction statistics is given.

1 Introduction

Bayesian framework has been of considerable interest in the context of predicting fu-
ture observations using a parametric model on the basis of previous ones. Due to
incorporating a priori knowledge about the object under observation the Bayesian
methods allow improving prediction quality, especially in case of a small size sample.
This has implications in such spheres of computer data analysis as medical sciences,
financial markets, bio-informatics. As in practice priors can be defined improperly, the
robustness analysis of the model is required in order to make appropriate inferences
under distortions of hypothetical assumptions. A detailed review of Bayesian robust-
ness subject can be found in [1]. In this paper we explore minimax robustness of the
multivariate Bayesian forecasting model under functional distortions of priors, defined
using chi-squared metric. Similar results for the univariate model can be found in [2].

2 Forecasting Model under Functional Distortions

Suppose that the random vector of observations x = (x;)L, € X C R™T stochastically
depends on # with the hypothetical conditional probability density function (p.d.f)
p°(z|0), where # € © C R™ is the unobserved random vector of model parameters
with the hypothetical p.d.f. 7°(#). The problem is to forecast the random vector
y € Y C R" that stochastically depends on x and 6 with the hypothetical conditional
p.d.f. ¢°(y|z,0). We explore model robustness in case of functional distortions, defined
using y?-metric (pseudometric):

PX2(h1,h2) _ / (hl(u) — hQ(U)) du,

hl (’LL)
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where p.d.f.s hi(u), ho(u) are defined on U. Suppose that the parameters vector 6 is
distributed according to an unknown p.d.f. 7%(6) € II, where II is a set of admissible
p.d.f.s of 6:

(0) e M={IL: 0<e <ey},IL = {n°() : po(n°(-),7°(")) = 2} . (1)

The performance of a prediction statistics (p.s.) f(-) : X — Y is characterized by the
risk functional:
r( / / (x,y) dydz, (2)

where p(-,-) is the Euclidean distance function in R™ and s°(+,) is the join p.d.f. of x
and y:

(o9 = [ 8yl )8 (al6)(0)ao)
e
The guaranteed upper risk functional r, () is used to analyze the robustness of a p.s.

fC):
r(f()) = sup r(f(-),s°(")), (3)
se(-)eS
where S is a set of admissible p.d.f.s s°(+). First, we aim to find the explicit expression

for the guaranteed upper risk functional under distortions (1). Our second objective is
to find the robust p.s. f.(:):

3 The Guaranteed Upper Risk Functional

As a Borelean function 7¢(-) from IT should be a p.d.f., the following ratios are valid:

(6) > 0,0 € ©, /wa(e) 46 —
(S

Denote the mathematical expectation and variance calculated for the hypothetical
model as Eo{-}, Do{-} respectively. The risk functional (2) can be represented in the
following form:

HIOi ) = [7 O (7(0):6)db (@)
e
where 71(f(+); 0) is the conditional risk functional for the fixed parameters vector 6:

/ [ @) 005w, 916) dud $(2,416) = 5k, 018",

Then the guaranteed upper risk functional (3) can be represented as

ro(f()) = sup r(f();7()).

we(-)ell
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Denote the conditional risk bias as 7 (f(-);6):

7 (f(-);0) = r1(f(-);0) — Eo{r1(f(-); 0)}.
Introduce the critical value of the distortions level:

\/Do{Tl(f('%@)}‘
sup | 7 (f(-); 0)]

0cO

e (f() = ()

Theorem 1. Let the hypothetical forecasting model be distorted according to (1) and
for any p.s. f(-) : X =Y the distortion level ey € [0,e*(f(+))]. Then the guaranteed
upper risk functional (3) can be represented as

re(f() = r(fC);7(), (6)

where the extreme p.d.f. 7 (-) is defined as

(7)

W*(Q) _ 7T0(9) (1 +€+ ; (f(),@) ) )

\/Do{ﬁ(f('); 9)}

Proof. The problem of the guaranteed upper risk finding under the theorem conditions
is equivalent to the following variational calculus problem:

(rORO0 B~ e
fﬂe(e) df = 17
(8)
7£(0)—7°(9))?
({( Ly - =
| =) 2006¢c0

Solving the problem (8), we obtain the extreme distorted p.d.f. 7*(-) (7). The restric-
tion (5) on the distortion level €, follows from the last restriction of (8). e

Corollary 1. Under the theorem (1) conditions the guaranteed upper risk (3) can be

represented as
r(f()) = 10(f(-)) + e/ Do{ri(£():0)}, (9)
where ro(f(+)) is the hypothetical risk functional:

wO) = [r(F0:0)20) . (10

S}

Proof. Taking into account (6), (4) (7), (10) we obtain (9). e
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4 The Robust Prediction Statistics

Denote

Fe(f()a T, Y, 9) = SO<Iay|0) + m (So(x7y|9) - 50(x7y)) 72 (f()a 9)7

(11)
reX,yeY,0ec0; e = ;r(lge*(f())

Theorem 2. Let the hypothetical forecasting model be distorted according to (1) and
the distortion level e, € [0,e**]. Then the robust p.s. f.(-) satisfies the following

integral equation:
JJy- 70OV F- (f(-): 2y, 0) dOdy
Yo

J({ TO(0)Fo (fo(-); 2, y,0) dody

felx) = (12)

Proof. The result is obtained by applying the method of variations to the following
optimization problem:

r(F(O) = max (),
fi()i=1,n

where

5 Conclusion

The explicit expression (9) of the guaranteed upper risk allows calculating its deviation
from the hypothetical risk for any p.s. f(-), and the order of this deviation is O(e.).

The integral equation (12) allows building iterative procedures for calculating the
robust p.s. fi(+):

ff Y- WO(Q)F5+(f(i_1)(-); T, Y, 9) d@dy

._ , _Y® »
foy = fo(), fy(x) = ffWO(Q)F5+<f(i_1)(');l‘,y,g) dbdy ,x € X;1eN.
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