ROBUST BAYESIAN MULTIVARIATE FORECASTING UNDER DISTORTIONS OF PRIOR DENSITIES IN THE CHI-SQUARE METRIC

P.A.SHLYK, A.YU.KHARIN

Belarusian State University

Minsk, BELARUS

 $e\text{-}mail: \verb"paul.shlyk@gmail.com", KharinAY@bsu.by"$

Abstract

This paper investigates robustness of the multivariate Bayesian forecasting model under the chi-square metric distortions of priors. The explicit form for the guaranteed upper risk is obtained and an integral equation for the robust prediction statistics is given.

1 Introduction

Bayesian framework has been of considerable interest in the context of predicting future observations using a parametric model on the basis of previous ones. Due to incorporating a priori knowledge about the object under observation the Bayesian methods allow improving prediction quality, especially in case of a small size sample. This has implications in such spheres of computer data analysis as medical sciences, financial markets, bio-informatics. As in practice priors can be defined improperly, the robustness analysis of the model is required in order to make appropriate inferences under distortions of hypothetical assumptions. A detailed review of Bayesian robustness subject can be found in [1]. In this paper we explore minimax robustness of the multivariate Bayesian forecasting model under functional distortions of priors, defined using chi-squared metric. Similar results for the univariate model can be found in [2].

2 Forecasting Model under Functional Distortions

Suppose that the random vector of observations $x = (x_t)_{t=1}^T \in X \subseteq \mathbb{R}^{n \times T}$ stochastically depends on θ with the hypothetical conditional probability density function (p.d.f) $p^0(x|\theta)$, where $\theta \in \Theta \subseteq \mathbb{R}^m$ is the unobserved random vector of model parameters with the hypothetical p.d.f. $\pi^0(\theta)$. The problem is to forecast the random vector $y \in Y \subseteq \mathbb{R}^n$ that stochastically depends on x and θ with the hypothetical conditional p.d.f. $g^0(y|x,\theta)$. We explore model robustness in case of functional distortions, defined using χ^2 -metric (pseudometric):

$$\rho_{\chi^2}(h_1, h_2) = \int_U \frac{(h_1(u) - h_2(u))^2}{h_1(u)} du,$$

where p.d.f.s $h_1(u), h_2(u)$ are defined on U. Suppose that the parameters vector θ is distributed according to an unknown p.d.f. $\pi^{\varepsilon}(\theta) \in \Pi$, where Π is a set of admissible p.d.f.s of θ :

$$\pi^{\varepsilon}(\theta) \in \Pi = \{\Pi_{\varepsilon} : 0 \le \varepsilon \le \varepsilon_{+}\}, \Pi_{\varepsilon} = \{\pi^{\varepsilon}(\cdot) : \rho_{\chi^{2}}(\pi^{0}(\cdot), \pi^{\varepsilon}(\cdot)) = \varepsilon^{2}\}. \tag{1}$$

The performance of a prediction statistics (p.s.) $f(\cdot): X \to Y$ is characterized by the risk functional:

$$r(f(\cdot); s^{\varepsilon}(\cdot)) = \iint_{X} \rho^{2}(f(x), y) s^{\varepsilon}(x, y) \, dy dx, \tag{2}$$

where $\rho(\cdot,\cdot)$ is the Euclidean distance function in \mathbb{R}^n and $s^{\varepsilon}(\cdot,\cdot)$ is the join p.d.f. of x and y:

$$s^{\varepsilon}(x,y) = \int_{\Omega} g^{0}(y|x,\theta)p^{0}(x|\theta)\pi^{\varepsilon}(\theta)d\theta.$$

The guaranteed upper risk functional $r_*(\cdot)$ is used to analyze the robustness of a p.s. $f(\cdot)$:

$$r_*(f(\cdot)) = \sup_{s^{\varepsilon}(\cdot) \in S} r(f(\cdot), s^{\varepsilon}(\cdot)), \tag{3}$$

where S is a set of admissible p.d.f.s $s^{\varepsilon}(\cdot)$. First, we aim to find the explicit expression for the guaranteed upper risk functional under distortions (1). Our second objective is to find the robust p.s. $f_*(\cdot)$:

$$r_*(f_*(\cdot)) = \inf_{f(\cdot)} r_*(f(\cdot)).$$

3 The Guaranteed Upper Risk Functional

As a Borelean function $\pi^{\varepsilon}(\cdot)$ from Π should be a p.d.f., the following ratios are valid:

$$\pi^{\varepsilon}(\theta) \ge 0, \theta \in \Theta, \int_{\Theta} \pi^{\varepsilon}(\theta) d\theta = 1.$$

Denote the mathematical expectation and variance calculated for the hypothetical model as $E_0\{\cdot\}$, $D_0\{\cdot\}$ respectively. The risk functional (2) can be represented in the following form:

$$r(f(\cdot); \pi^{\varepsilon}(\cdot)) = \int_{\Theta} \pi^{\varepsilon}(\theta) r_1(f(\cdot); \theta) d\theta, \tag{4}$$

where $r_1(f(\cdot);\theta)$ is the conditional risk functional for the fixed parameters vector θ :

$$r_1(f(\cdot);\theta) = \iint_{X} \rho^2(f(x), y) s^0(x, y|\theta) \, dy dx; \ s^0(x, y|\theta) = g^0(y|x, \theta) p^0(x|\theta).$$

Then the guaranteed upper risk functional (3) can be represented as

$$r_*(f(\cdot)) = \sup_{\pi^{\varepsilon}(\cdot) \in \Pi} r(f(\cdot); \pi^{\varepsilon}(\cdot)).$$

Denote the conditional risk bias as r $(f(\cdot); \theta)$:

$$\overset{\circ}{r}(f(\cdot);\theta) = r_1(f(\cdot);\theta) - E_0\{r_1(f(\cdot);\theta)\}.$$

Introduce the critical value of the distortions level:

$$\varepsilon^*(f(\cdot)) = \frac{\sqrt{D_0\{r_1(f(\cdot);\theta)\}}}{\sup_{\theta \in \Theta} |\stackrel{\circ}{r}(f(\cdot);\theta)|}.$$
 (5)

Theorem 1. Let the hypothetical forecasting model be distorted according to (1) and for any p.s. $f(\cdot): X \to Y$ the distortion level $\varepsilon_+ \in [0, \varepsilon^*(f(\cdot))]$. Then the guaranteed upper risk functional (3) can be represented as

$$r_*(f(\cdot)) = r(f(\cdot); \pi^*(\cdot)), \tag{6}$$

where the extreme p.d.f. $\pi^*(\cdot)$ is defined as

$$\pi^*(\theta) = \pi^0(\theta) \left(1 + \varepsilon_+ \frac{\mathring{r}(f(\cdot); \theta)}{\sqrt{D_0\{r_1(f(\cdot); \theta)\}}} \right). \tag{7}$$

Proof. The problem of the guaranteed upper risk finding under the theorem conditions is equivalent to the following variational calculus problem:

$$\begin{cases}
\int_{\Theta} \pi^{\varepsilon}(\theta) r_{1}(f(\cdot); \theta) d\theta \to \max_{\pi^{\varepsilon}(\cdot) \in \Pi_{\varepsilon}, 0 \leq \varepsilon \leq \varepsilon_{+}} \\
\int_{\Theta} \pi^{\varepsilon}(\theta) d\theta = 1, \\
\int_{\Theta} \frac{(\pi^{\varepsilon}(\theta) - \pi^{0}(\theta))^{2}}{\pi^{0}(\theta)} = \varepsilon^{2}. \\
\pi^{\varepsilon}(\theta) \geq 0, \theta \in \Theta.
\end{cases}$$
(8)

Solving the problem (8), we obtain the extreme distorted p.d.f. $\pi^*(\cdot)$ (7). The restriction (5) on the distortion level ε_+ follows from the last restriction of (8).

Corollary 1. Under the theorem (1) conditions the guaranteed upper risk (3) can be represented as

$$r_*(f(\cdot)) = r_0(f(\cdot)) + \varepsilon_+ \sqrt{D_0\{r_1(f(\cdot);\theta)\}}, \tag{9}$$

where $r_0(f(\cdot))$ is the hypothetical risk functional:

$$r_0(f(\cdot)) = \int_{\Omega} r_1(f(\cdot); \theta) \pi^0(\theta) d\theta.$$
 (10)

Proof. Taking into account (6), (4) (7), (10) we obtain (9).

4 The Robust Prediction Statistics

Denote

$$F_{\varepsilon}(f(\cdot); x, y, \theta) = s^{0}(x, y | \theta) + \frac{\varepsilon}{\sqrt{D_{0}\{r_{1}(f(\cdot); \theta)\}}} \left(s^{0}(x, y | \theta) - s^{0}(x, y)\right) \stackrel{\circ}{r} (f(\cdot); \theta),$$

$$x \in X, y \in Y, \theta \in \Theta; \ \varepsilon^{**} = \inf_{f(\cdot)} \varepsilon^{*}(f(\cdot)).$$
(11)

Theorem 2. Let the hypothetical forecasting model be distorted according to (1) and the distortion level $\varepsilon_+ \in [0, \varepsilon^{**}]$. Then the robust p.s. $f_*(\cdot)$ satisfies the following integral equation:

$$f_*(x) = \frac{\iint\limits_{Y\Theta} y \cdot \pi^0(\theta) F_{\varepsilon_+}(f_*(\cdot); x, y, \theta) \, d\theta dy}{\iint\limits_{Y\Theta} \pi^0(\theta) F_{\varepsilon_+}(f_*(\cdot); x, y, \theta) \, d\theta dy}.$$
 (12)

Proof. The result is obtained by applying the method of variations to the following optimization problem:

$$r_*(f(\cdot)) \to \max_{f_i(\cdot), i=\overline{1,n}}, f(\cdot),$$

where

$$f_i(\cdot): X \to Y_i, \ i = \overline{1, n}; \ Y = Y_1 \times Y_2 \times ... \times Y_n,$$

 $f(x) = (f_1(x), f_2(x), ..., f_n(x)), \ x \in X.$

5 Conclusion

The explicit expression (9) of the guaranteed upper risk allows calculating its deviation from the hypothetical risk for any p.s. $f(\cdot)$, and the order of this deviation is $\mathcal{O}(\varepsilon_+)$.

The integral equation (12) allows building iterative procedures for calculating the robust p.s. $f_*(\cdot)$:

$$f_{(0)} := f_0(x), f_{(i)}(x) = \frac{\iint\limits_{Y\Theta} y \cdot \pi^0(\theta) F_{\varepsilon_+}(f_{(i-1)}(\cdot); x, y, \theta) \, d\theta dy}{\iint\limits_{Y\Theta} \pi^0(\theta) F_{\varepsilon_+}(f_{(i-1)}(\cdot); x, y, \theta) \, d\theta dy}, x \in X; i \in \mathbb{N}.$$

The research is partially supported by the grant No F06M-072 of the Belarusian National Science Foundation.

References

- [1] Berger J.O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer-Verlag, New York.
- [2] Kharin A. (2002). Minimax Robustness of Bayesian Forecasting under Functional Distortions of Probability Densities. *Austrian Journal of Statistics*. Vol. **31**, No. 2&3, pp. 177-188.