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Abstract

This paper investigates robustness of the multivariate Bayesian forecasting
model under the chi-square metric distortions of priors. The explicit form for
the guaranteed upper risk is obtained and an integral equation for the robust
prediction statistics is given.

1 Introduction

Bayesian framework has been of considerable interest in the context of predicting fu-
ture observations using a parametric model on the basis of previous ones. Due to
incorporating a priori knowledge about the object under observation the Bayesian
methods allow improving prediction quality, especially in case of a small size sample.
This has implications in such spheres of computer data analysis as medical sciences,
financial markets, bio-informatics. As in practice priors can be defined improperly, the
robustness analysis of the model is required in order to make appropriate inferences
under distortions of hypothetical assumptions. A detailed review of Bayesian robust-
ness subject can be found in [1]. In this paper we explore minimax robustness of the
multivariate Bayesian forecasting model under functional distortions of priors, defined
using chi-squared metric. Similar results for the univariate model can be found in [2].

2 Forecasting Model under Functional Distortions

Suppose that the random vector of observations x = (xt)
T
t=1 ∈ X ⊆ Rn×T stochastically

depends on θ with the hypothetical conditional probability density function (p.d.f)
p0(x|θ), where θ ∈ Θ ⊆ Rm is the unobserved random vector of model parameters
with the hypothetical p.d.f. π0(θ). The problem is to forecast the random vector
y ∈ Y ⊆ Rn that stochastically depends on x and θ with the hypothetical conditional
p.d.f. g0(y|x, θ). We explore model robustness in case of functional distortions, defined
using χ2-metric (pseudometric):

ρχ2(h1, h2) =

∫
U

(h1(u) − h2(u))
2

h1(u)
du,
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where p.d.f.s h1(u), h2(u) are defined on U . Suppose that the parameters vector θ is
distributed according to an unknown p.d.f. πε(θ) ∈ Π, where Π is a set of admissible
p.d.f.s of θ:

πε(θ) ∈ Π = {Πε : 0 ≤ ε ≤ ε+} ,Πε =
{
πε(·) : ρχ2(π0(·), πε(·)) = ε2

}
. (1)

The performance of a prediction statistics (p.s.) f(·) : X → Y is characterized by the
risk functional:

r(f(·); sε(·)) =

∫
X

∫
Y

ρ2(f(x), y)sε(x, y) dydx, (2)

where ρ(·, ·) is the Euclidean distance function in Rn and sε(·, ·) is the join p.d.f. of x
and y:

sε(x, y) =

∫
Θ

g0(y|x, θ)p0(x|θ)πε(θ)dθ.

The guaranteed upper risk functional r∗(·) is used to analyze the robustness of a p.s.
f(·):

r∗(f(·)) = sup
sε(·)∈S

r(f(·), sε(·)), (3)

where S is a set of admissible p.d.f.s sε(·). First, we aim to find the explicit expression
for the guaranteed upper risk functional under distortions (1). Our second objective is
to find the robust p.s. f∗(·):

r∗(f∗(·)) = inf
f(·)

r∗(f(·)).

3 The Guaranteed Upper Risk Functional

As a Borelean function πε(·) from Π should be a p.d.f., the following ratios are valid:

πε(θ) ≥ 0, θ ∈ Θ,

∫
Θ

πε(θ) dθ = 1.

Denote the mathematical expectation and variance calculated for the hypothetical
model as E0{·}, D0{·} respectively. The risk functional (2) can be represented in the
following form:

r(f(·); πε(·)) =

∫
Θ

πε(θ)r1(f(·); θ) dθ, (4)

where r1(f(·); θ) is the conditional risk functional for the fixed parameters vector θ:

r1(f(·); θ) =

∫
X

∫
Y

ρ2(f(x), y)s0(x, y|θ) dydx; s0(x, y|θ) = g0(y|x, θ)p0(x|θ).

Then the guaranteed upper risk functional (3) can be represented as

r∗(f(·)) = sup
πε(·)∈Π

r(f(·); πε(·)).
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Denote the conditional risk bias as
◦
r (f(·); θ):

◦
r (f(·); θ) = r1(f(·); θ) − E0{r1(f(·); θ)}.

Introduce the critical value of the distortions level:

ε∗(f(·)) =

√
D0{r1(f(·); θ)}

sup
θ∈Θ

| ◦
r (f(·); θ)|

. (5)

Theorem 1. Let the hypothetical forecasting model be distorted according to (1) and
for any p.s. f(·) : X → Y the distortion level ε+ ∈ [0, ε∗(f(·))]. Then the guaranteed
upper risk functional (3) can be represented as

r∗(f(·)) = r(f(·); π∗(·)), (6)

where the extreme p.d.f. π∗(·) is defined as

π∗(θ) = π0(θ)

(
1 + ε+

◦
r (f(·); θ)√

D0{r1(f(·); θ)}

)
. (7)

Proof. The problem of the guaranteed upper risk finding under the theorem conditions
is equivalent to the following variational calculus problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Θ

πε(θ)r1(f(·); θ) dθ → max
πε(·)∈Πε,0≤ε≤ε+∫

Θ

πε(θ) dθ = 1,∫
Θ

(πε(θ)−π0(θ))2

π0(θ)
= ε2.

πε(θ) ≥ 0, θ ∈ Θ.

(8)

Solving the problem (8), we obtain the extreme distorted p.d.f. π∗(·) (7). The restric-
tion (5) on the distortion level ε+ follows from the last restriction of (8). •

Corollary 1. Under the theorem (1) conditions the guaranteed upper risk (3) can be
represented as

r∗(f(·)) = r0(f(·)) + ε+

√
D0{r1(f(·); θ)}, (9)

where r0(f(·)) is the hypothetical risk functional:

r0(f(·)) =

∫
Θ

r1(f(·); θ)π0(θ) dθ. (10)

Proof. Taking into account (6), (4) (7), (10) we obtain (9). •
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4 The Robust Prediction Statistics

Denote

Fε(f(·); x, y, θ) = s0(x, y|θ) + ε√
D0{r1(f(·);θ)} (s0(x, y|θ) − s0(x, y))

◦
r (f(·); θ),

x ∈ X, y ∈ Y, θ ∈ Θ; ε∗∗ = inf
f(·)

ε∗(f(·)).
(11)

Theorem 2. Let the hypothetical forecasting model be distorted according to (1) and
the distortion level ε+ ∈ [0, ε∗∗]. Then the robust p.s. f∗(·) satisfies the following
integral equation:

f∗(x) =

∫
Y

∫
Θ

y · π0(θ)Fε+(f∗(·); x, y, θ) dθdy∫
Y

∫
Θ

π0(θ)Fε+(f∗(·); x, y, θ) dθdy
. (12)

Proof. The result is obtained by applying the method of variations to the following
optimization problem:

r∗(f(·)) → max
fi(·),i=1,n

, f(·),

where
fi(·) : X → Yi, i = 1, n; Y = Y1 × Y2 × ...× Yn,

f(x) = (f1(x), f2(x), ..., fn(x)), x ∈ X. •

5 Conclusion

The explicit expression (9) of the guaranteed upper risk allows calculating its deviation
from the hypothetical risk for any p.s. f(·), and the order of this deviation is O(ε+).

The integral equation (12) allows building iterative procedures for calculating the
robust p.s.f∗(·):

f(0) := f0(x), f(i)(x) =

∫
Y

∫
Θ

y · π0(θ)Fε+(f(i−1)(·); x, y, θ) dθdy∫
Y

∫
Θ

π0(θ)Fε+(f(i−1)(·); x, y, θ) dθdy
, x ∈ X; i ∈ N.
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