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Abstract

We investigate robustness of some two-level testing procedures under distor-
tions induced by using an asymptotic distribution of first level statistics instead of
an exact one. We demonstrate that ignoring the distortions results in unreliable
conclusions and we propose robustness conditions for the two-level procedures.

1 Introduction. Mathematical model

When studying random number generators, analysing cryptographic algorithms, per-
forming statistical simulation, investigating genetic data researcher often needs to apply
a number of statistical tests to a large amount of data. The widely used technique in
this case is to use two-level procedures for multiple hypotheses testing [2]. However
using an asymptotic distribution of first level statistics instead of an exact one (see,
e.g. [4]) may result in an unreliable conclusion of the procedure.

Consider testing the null hypothesis H0 against the alternative H1 on K indepen-
dent samples X(1), . . . , X(K), each of size n. On the first level the two-level testing
procedure applies a test C1 to the samples and computes test statistics S

(1)
1 , . . . , S

(K)
1

and corresponding P -values P (1), . . . , P (K). If S
(i)
1 has a continuous distribution with

a c.d.f. F and H0 holds then P (1), . . . , P (K) are independent and have uniform distri-
bution U [0, 1]. The second level of performing the two-level procedure is to compare
the empirical distribution of {P (i)} with the uniform distribution via a goodness-of-fit
test C2 such the Kolmogorov test, chi-square test, etc. So the two-level procedure is

Proc({P (i)}, FU [0,1], α) =

{
decide H0, if SProc({P (i)}, FU [0,1]) < ∆(α),
decide H1, otherwise,

(1)

where SProc = SProc({P (i)}, FU [0,1]) is a statistic of the test C2, FU [0,1] is the theoretical
c.d.f. of P -values, α is a fixed significance level, ∆(α) is a threshold of the test C2.

When calculating P -values one usually uses a limiting c.d.f. F instead of the exact
c.d.f. Fn of the statistic S

(i)
1 (Fn → F as n → ∞). Therefore the calculated P -values

are distorted and their c.d.f. is in a neighbourhood of the uniform distribution c.d.f.
FU [0,1]. We assume that this neighbourhood is the Levy neighbourhood of the form

Pε(F0) = {F |(∀t)F0(t− ε) − ε ≤ F (t) ≤ F0(t+ ε) + ε}, ε > 0.
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We denote the distorted P -values by {P (i)
ε(n)} and their c.d.f. by Fε(n):

Fε(n) ∈ Pε(n)(FU [0,1]), ε(n) → 0, n → ∞. (2)

On the second level of the procedure (1) one should use either the “plain” statistic

SProc = SProc({P (i)}, FU [0,1]) or the “distorted” statistic S̃Proc = SProc({P (i)
ε(n)}, Fε(n)).

If the distortions (2) take place and Fε(n) is unknown then both the statistics are
unavailable. So one has to use the procedure (1) with the statistic Sε(n),P roc =

SProc({P (i)
ε(n)}, FU [0,1]):

Proc({P (i)
ε(n)}, FU [0,1], α) =

{
decide H0, if SProc({P (i)

ε(n)}, FU [0,1]) < ∆(α),

decide H1, otherwise.
(3)

Define the Type I Error probability of the procedure (3) as

aε(n),K = Pr[]Proc({P (i)
ε(n)}, FU [0,1], α) = H1 | H0 is true. (4)

Since we use the c.d.f. FU [0,1] instead of Fε(n) the Type I Error probability may not be
equal to α. Clearly, it tends to 1 as K → ∞ if n is fixed and the test C2 is consistent.
Thus the procedure (3) may result in an unreliable conclusion.

We investigate robustness of this procedure under distortions (2), more precisely,
we find conditions for convergence aε(n),K → α as n,K → ∞ for some widely used
two-level procedures.

2 Robustness of two-level procedures

2.1 Using the Kolmogorov test as C2

Let us investigate robustness of the two-level procedure (3) based on the Kolmogorov
test C2 under the assumption of the distortions (2). Since both the “plain” statistic
SKolm and the “distorted” statistic S̃Kolm are unavailable,

SKolm =
√
K sup

0≤x≤1

∣∣∣∣∣1/K
K∑
i=1

I{P (i) ≤ x} − x

∣∣∣∣∣ ,
S̃Kolm =

√
K sup

0≤x≤1

∣∣∣∣∣1/K
K∑
i=1

I{P (i)
ε(n) ≤ x} − Fε(n)(x)

∣∣∣∣∣ ,
one has to use the statistic SKolm,ε(n) =

√
K sup0≤x≤1

∣∣∣1/K∑K
i=1 I{P (i)

ε(n) ≤ x} − x
∣∣∣. Let

us investigate properties of the procedure (3) based on the statistic SKolm,ε(n).

Statement 1 ( [1]). Under the distortions (2) if n is fixed and Fε(n)(x) �= FU [0,1](x),
then the Type I Error probability of the procedure (3) tends to 1: aε(n),K → 1, K → ∞.

The next theorem gives the condition for convergence of the Type I Error proba-
bility (4) to the desired significance level α.

Theorem 1. Under H0 if
√
Kε(n) → 0 as n,K → ∞, then |SKolm,ε(n) − S̃Kolm| a.s.−−→ 0

and aε(n),K → α as n,K → ∞.
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2.2 Using the chi-square test as C2

Consider now the procedure (3) based on the chi-square test. When conducting this
test one divides the interval [0; 1] into M sub-intervals and calculates the numbers

νj({P (i)}) of P (i)’s in the j-th sub-interval for j = 1,M . Let p
(0)
j (and p

(n)
j ) be the

probability of the event that P (i) (P
(i)
ε(n) accordingly) lies within the j-th sub-interval.

Lemma 1. Under H0 if c.d.f. Fε(n) of {P (i)
ε(n)} belongs to Pε(n), then there exist

εj(n) ∈ R, j = 1,M , εj(n) → 0 as n → ∞, such that p
(n)
j = p

(0)
j (1 + εj(n)).

Under the assumption (2) one should use the “distorted” statistic S̃χ2 instead of
the “plain” statistic Sχ2,

S̃χ2 =
∑M

j=1(νj({P
(i)
ε(n)})−Kp

(n)
j )2/(Kp

(n)
j ), Sχ2 =

∑M
j=1(νj({P (i)})−Kp(0)

j )2/(Kp
(0)
j ).

As this statistic is unavailable too, one has to use the statistic

Sχ2,ε(n) =
M∑
j=1

(νj({P (i)
ε(n)}) −Kp

(0)
j )2/(Kp

(0)
j ).

Investigate now the properties of the procedure (3) based on the statistic Sχ2,ε(n).

Statement 2 ( [1]). Under the distortions (2) if (p
(n)
1 , . . . , p

(n)
M )′ �= (p

(0)
1 , . . . , p

(0)
M )′ and

n is fixed, then the Type I Error probability (4) tends to 1: aε(n),K → 1, K → ∞.

The next theorem gives the condition for convergence of the Type I Error proba-
bility (4) to the desired significance level α.

Theorem 2. Let |εj(n)| ≤ t(n), j = 1,M and t(n) → 0, n → ∞. Under H0 if√
Kt(n) → 0, n → ∞, then E

{
(Sχ2,ε(n) − S̃χ2)2

}
→ 0 and aε(n),K → α as n,K → ∞.

2.3 Using the aggregated data test as C2

Investigate now robustness of the two-level procedure (3) based on an aggregated data
test [3]. The statistic of the test C2 is based on the proportion of accepted hypotheses
on the significance level αc: ν0({P (i)}) = 1

K

∑K
i=1 I{P (i) ≥ αc} and has the form

SB =
√
K 1−αc−ν0({P (i)})√

αc(1−αc)
. Under the assumption of the distortions (2) one should use the

“distorted” statistic S̃B =
√
K

1−Fε(n)(αc)−ν0({P (i)
ε(n)

})√
Fε(n)(αc)(1−Fε(n)(αc))

instead of the “plain” statistic. As

this statistic is unavailable too, one has to use the statistic SB,ε(n) =
√
K

1−αc−ν0({P (i)
ε(n)

})√
αc(1−αc)

.

Let us investigate the properties of the procedure (3) based on the statistic SB,ε(n).

Theorem 3. Let n is fixed. Under the distortions (2) and K → ∞ the Type I Er-
ror probability of the procedure (3) tends to 0, if Fε(n)(αc) < αc, and tends to 1, if
Fε(n)(αc) > αc.
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The next theorem gives the condition for convergence of the Type I Error probability
to the desired significance level α.

Theorem 4. Under H0 if
√
Kε(n) −−−−−→

n,K→∞
0, then |SB,ε(n)−S̃B| a.s.−−→ 0 and aε(n),K → α

as n,K → ∞. Moreover, aε(n),K − α = O(
√
Kε(n)).

3 Simulation study

We consider the procedure from subsection 2.3 which uses the monobit test as the test
C1. The statistic of the monobit test is the number of ones in a sample. Under H0 the
statistic has the binomial distribution, but in practice one uses the approximation by
the normal distribution. The figures below present the estimates of the Type I Error
probability aε(n),K (solid line) with the 95-% confidence interval (dotted line) and the
theoretical values of aε(n),K (dashed line) for αc = 0.0455 (in this case Fε(n)(αc) −
αc = −0.00042 < 0) and αc = 0.049 (Fε(n)(αc) − αc = 0.00043 > 0), n = 65536,
ε(n) ≈ 0.0015, α = 0.05. One can see that aε(n),K tends to 0 or 1 subject to the sign
of Fε(n)(αc) − αc. As consistent with the results of Theorem 4 aε(n),K ≈ α = 0.05 if√
Kε(n) is nearly 0.

αc = 0.0455 αc = 0.049
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