
173 

Risk of Forecasting with Fitting Bloomfield Model to Independent 

Training Sample 

Valeriy Voloshko 
Research Institute for Applied Problems of Mathematics and Informatics, Independence Ave., 4, 

Room 701, 220030, valeravoloshko@yandex.ru 
 

Abstract: The risk of forecasting is analyzed for the 

scheme with independent training and forecasted samples 

of two identically distributed Gaussian stationary time 

series. The asymptotic expansion of risk is constructed 

when the forecasted sample is infinite and the spectrum is 

estimated by increasing training sample using fitting of 

finite order Bloomfield model. 
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1. INTRODUCTION  

Forecasting time series is a well-studied problem in 

the case of known model [1,2,3]. When the model is 

unknown, it should be identified by training data. 

Therefore, methods of identification are needed, and it is 

desirable them to be robust w.r.t. distortions of data [4,5] 

or w.r.t. small data volumes [6,7,8,9]. In this paper there 

is considered the problem of forecasting of stationary 

Gaussian time series with spectrum identification through 

fitting Bloomfield model [10,11] by independent training 

sequence. 

2. MATHEMATICAL MODEL 

Let  :tx t  be a Gaussian stationary time series 

with zero mean   0tx   and some non-negative 

spectrum :S  , [ , ]    , which is assumed 

unknown.  

Furthermore, let us assume that we have a sample 
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  of length T   from time 

series  tx , which does not depend on  tx  and 

identically distributed with it. 

Time inversion t t    saves stationarity, Gaussianity 

and the spectrum of a time series [2], so let us without 

loss of generality consider the following problem of 

retrospective forecasting: by samples X , X  to build a 

forecast for 0x  and to research its asymptotic properties. 

This problem is equivalent to the classical problem of 

forecasting [4] of the future value 1fTx   by X , X . 

3. PLUG-IN FORECAST  

Let us use the mean-square risk [4]: 
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as a measure of the accuracy of forecasting statistics 

 0 0 ,x x X X . According to [1,2], if time series model 

is fully specified, then the need for training data is 

missing and the statistic  0 0 |x x X    has a minimal 

risk (1) among functions  0x X  which depend only on 

X . Since  tx  is Gaussian, 0x  is linear w.r.t. X  [2]: 
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 are uniquely expressed in terms of 

( )S   by the Durbin-Levinson formulas [12]. Therefore we 

consider only forecasting statistics linear w.r.t. X . 

Since the spectrum ( )S   is unspecified, according to 

the plug-in principle let us identify it by the training 

sample X , i.e. build the spectrum estimator S . Then on 

the base of spectrum estimator it is built a plug-in 

forecasting statistics, which approximate the optimal 

forecast (2): 

 0 ,

1

f

f

T

T t t

t

x a S x 



 .                         (3) 

In this paper, following [6,7], it is proposed to identify the 

Bloomfield model [10] of order  0, ,[ 2]p T  , 

where [ ]z  is the integer part of z : 
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The order p  of the Bloomfield model let us call the 

smoothing parameter. 

4. ASYMPTOTIC EXPANSION OF RISK  

Introduce some notations: 1{ | } 1m n  , if \{0}m  

divides n , otherwise 1{ | } 0m n  , 

1{2 | }, 1 ,n n nn n      ,
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where  , {1, , }p . Also for : nK   : 
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To formulate the main result we need the following 

functions [8,9] depending on spectrum ( )S   ( , ,   ): 
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Let us build on the base of it the functions: 
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   is known as the Apery’s 

constant [13]. 

Theorem 2. If ( ) 0S   and (ln ) 1S  , then at 

fT    the risk (1) of forecasting statistics (3) on the 

base of spectrum identification (4) uniformly w.r.t. p  

satisfies the asymptotic expansion as T  : 
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Note that if the smoothing parameter p  is fixed and 

T  , then the risk (5) tends to the value 2

0
( ) QS e    , 

which according to Theorem 2 of [6] coincides with the 

risk of plug-in forecasting statistics on the base of 

Bloomfield model of order p  in the case of known 

spectrum. 

Corollary 1. Let ( ) 0S   and (ln ) 1S     . Then 

at fT    the risk (1) of forecasting statistics (3) on the 

base of spectrum identification (4) uniformly w.r.t. 

0 3p T   satisfies the asymptotic expansion as 

T  : 
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Note that the only one coefficient 4K  at the smallest 

term 2T   of expansion (6) depends on spectrum ( )S  . 

This demonstrates the robustness of forecasting statistics 

(3) w.r.t. distortions of the time series model, which keep 

the regularity condition (ln ) 1S   holding. The 

expansion (6) is applicable when the value p

  is 

commensurate with 6 3p T , i.e. when lnp C T , where 

0C   is some model dependent constant. Since 

coefficients 1K , 2K  and 3K  are positive, the first term of 

the expansion (6) increases with increasing of p . 

Therefore the optimal choice of the smoothing parameter 

p  on the base of this expansion is the nearest odd integer 

to lnC T . The choice of an odd number minimizes the 

term with the factor p  of the coefficient 4K . The 

asymptotic analysis of the expansion (5) in the interval 

0 lnp C T   as T   seems to be difficult problem 

and requires a special research. 
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