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Abstract: The risk of forecasting is analyzed for the
scheme with independent training and forecasted samples
of two identically distributed Gaussian stationary time
series. The asymptotic expansion of risk is constructed
when the forecasted sample is infinite and the spectrum is
estimated by increasing training sample using fitting of
finite order Bloomfield model.
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1. INTRODUCTION

Forecasting time series is a well-studied problem in
the case of known model [1,2,3]. When the model is
unknown, it should be identified by training data.
Therefore, methods of identification are needed, and it is
desirable them to be robust w.r.t. distortions of data [4,5]
or w.r.t. small data volumes [6,7,8,9]. In this paper there
is considered the problem of forecasting of stationary
Gaussian time series with spectrum identification through
fitting Bloomfield model [10,11] by independent training
sequence.

2. MATHEMATICAL MODEL

Let {x :tel} be a Gaussian stationary time series
with zero mean E{x}=0 and some non-negative
spectrum S:IT1—U ., IT=[-=m =], which is assumed
unknown.

Furthermore, let us assume that we have a sample

Tf
X :(xj)j:l of length T, €l

- - 7 T
training sample X :()N(j)jzl

to be forecasted and a

of length T €[] from time

series {%}, which does not depend on {x} and

identically distributed with it.

Time inversion t'=—t saves stationarity, Gaussianity
and the spectrum of a time series [2], so let us without
loss of generality consider the following problem of

retrospective forecasting: by samples X, X to build a
forecast for x, and to research its asymptotic properties.

This problem is equivalent to the classical problem of
forecasting [4] of the future value x; ., by X, X.

3. PLUG-IN FORECAST
Let us use the mean-square risk [4]:

=E{(% %)} &)
as a measure of the accuracy of forecasting statistics
X, = f(o(x,)?). According to [1,2], if time series model
is fully specified, then the need for training data is
missing and the statistic X; =E{x, | X} has a minimal

risk (1) among functions X,(X) which depend only on

X . Since {x} is Gaussian, X; is linear w.rt. X [2]:
Tf
X =D 8 % @
t=1

T( - -
where {a}“ t(S)} are uniquely expressed in terms of
" t=1

S(-) by the Durbin-Levinson formulas [12]. Therefore we
consider only forecasting statistics linear w.r.t. X .

Since the spectrum S(-) is unspecified, according to
the plug-in principle let us identify it by the training
sample X , i.e. build the spectrum estimator S . Then on
the base of spectrum estimator it is built a plug-in

forecasting statistics, which approximate the optimal
forecast (2):

Tf
= ar (S)x. @3)
t=1
In this paper, following [6,7], it is proposed to identify the
Bloomfield model [10] of order peA={0,....[T/2]},
where[z] is the integer partof zel :

Y(X)‘F %e", hell,
T:%gn (275’[) 05[2?1) el
§(k):exp[20jcos(jx)J, Lell. (4)

i=p
The order p of the Bloomfield model let us call the
smoothing parameter.
4. ASYMPTOTIC EXPANSION OF RISK
Introduce some notations: {m|n}=1, if mel \{O}
divides n e[l , otherwise {m|n}=0,
K, =H2|n},

g, =1-x,, nel,

=% ¥ i Jeos(i)

jep" z=ht. £],

Y, (%)= Z(1+KT( 1)k+ +J")l_lcos ix),

jep"

where A eIl, p=4{1,...

[K], =(2n)-"j K(z)ll[cos(jrzr )iz

, p}. Also for K:I1" — U :

n

jed",

K(k)_Z[K]JHcos i), Aell,

jep"
x(K)=TILr+QO:/[K]T, n(K)=e" b K10 .

To formulate the main result we need the following
functions [8,9] depending on spectrum S() (A,v,pell ):
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H(k)=ZZ[S]jsin(jx), f(x)z%,
_HM+HW _29%(vip)
‘P(V,M)_ osin Y V+u ) (D(V’“)— S .

Let us build on the base of it the functions:

Q(1) =D _[InS]; cos( ji),
i>p

Q =1 Ql——® +2(f+Y |n2)

Q!
Q,= 21
where A=Z:n>on‘3

constant [13].
Theorem 2. If n(S)>0 and y(InS)<1, then at

T, =+oo the risk (1) of forecasting statistics (3) on the
base of spectrum identification (4) uniformly w.r.t. pe A
satisfies the asymptotic expansion as T — +oo:

2 6

_ 2Q0) 7] T-i p
R—n(S)[;[Qj (\)e ]OT j +o(T—3B. (5)
Note that if the smoothing parameter p is fixed and

T — 400, then the risk (5) tends to the value TE(S)[EZQ ]0 ,

which according to Theorem 2 of [6] coincides with the
risk of plug-in forecasting statistics on the base of
Bloomfield model of order p in the case of known

spectrum.
Corollary 1. Let =(S)>0 and yx(InS) <y, <1. Then

at T, =+oo the risk (1) of forecasting statistics (3) on the
base of spectrum identification (4) uniformly w.r.t.

8A

Y +— 3 O, +20 +h,

~1,202 is known as the Apery’s

O0<p<T/3 satisfies the asymptotic expansion as
T — +o0:
R= n(5)£1+ P, Kop"+Ksp+K, tKpHK,
T T
6
+O('° +xD ©)
where
2 4
K1:Tc_| KZ:TE—-FA
6 72
2 2 4
Ky =(1+%;) T n2+in?2+Z |+ 2 _na,
12 6 ) 144
s n’ [@]oo +[F15
K,=—-¢ T 122 +— In2+[h], ——>>—=

+(;—Z+In2)(f(0) [fl)+ [_2+KT |n2j(f(”)_[f]°)'

Note that the only one coefficient K, at the smallest

term T2 of expansion (6) depends on spectrum S(.).
This demonstrates the robustness of forecasting statistics
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(3) w.r.t. distortions of the time series model, which keep
the regularity condition y(InS)<1 holding. The

expansion (6) is applicable when the value ! is

commensurate with p°®/T*, i.e. when p>CInT , where
C>0 is some model dependent constant. Since
coefficients K;, K, and K, are positive, the first term of
the expansion (6) increases with increasing of p.

Therefore the optimal choice of the smoothing parameter
p on the base of this expansion is the nearest odd integer

to CInT . The choice of an odd number minimizes the
term with the factor —¢, of the coefficient K,. The

asymptotic analysis of the expansion (5) in the interval
0<p<CInT as T — +oo seems to be difficult problem

and requires a special research.
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