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Abstract

The problems of robustness of parametric hypotheses testing are considered
for the cases of simple and composite hypotheses. Conditional error probabilities
and expected sample sizes of sequential tests are evaluated. Asymptotic expan-
sions for these characteristics are obtained under the distortions of Tukey–Huber
type. Robust sequential tests are constructed with the minimax criterion.

1 Introduction

The sequential approach [1] is intensively used in computer data analysis for hypotheses
testing. But the characteristics of sequential tests are problematic to calculate with a
given accuracy even for basic hypothetical models [2]. The sequential procedures are
applied for the real data sets that are usually not adequate to certain hypothetical
model. This hypothetical model is often distorted. Hence the robustness analysis and
robust sequential test construction are important problems.

2 The Case of Simple Hypotheses

Let on a measurable space (Ω,F) discrete random variables x1, x2, . . . be defined,
∀t ∈ N, xt ∈ U = {u1, u2, . . . , uM}, M < ∞, u1 < u2 < · · · < uM . Let these
random variables be independent identically distributed, from the discrete probability
distribution with a parameter θ ∈ Θ = {θ0, θ1}:

P (u; θ) = Pθ{xt = u} = a−J(u;θ), t ∈ N, u ∈ U, (1)

a ∈ N \ {1}; J(u; θ): U × Θ −→ N0 is a function satisfying
∑

u∈U a
−J(u;θ) = 1.

Consider two simple hypotheses w.r.t. the parameter θ:

H0 : θ = θ0, H1 : θ = θ1. (2)

Such a problem appears in applications, where one of the two possible regimes can be
realized.

Introduce the notation:

Λn = Λn(x1, . . . , xn) =
∑n

t=1
λt;

λt = loga (P (xt; θ1)/P (xt; θ0)) = J(xt; θ0) − J(xt; θ1) ∈ Z.

78



To test these hypotheses by n (n = 1, 2 . . . ) observations let us consider the sequen-
tial probability ratio test (SPRT) [1]:

dn = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn), (3)

where 1D(·) is the indicator function of the set D. The decisions dn = 0 and dn =
1 mean stopping of the observation process and the acceptance of the appropriate
hypothesis. The decision dn = 2 means that it is necessary to make the (n + 1)-th
observation. In (3) the thresholds C− < C+ are the given values (parameters of the
test). According to [1], we use

C+ = [loga ((1 − β0)/α0)] , C− = [loga (β0/(1 − α0))] , (4)

where α0, β0 are given maximal possible values of the probabilities of type I and type
II errors respectively. In fact, the true values α, β for the probabilities of type I and
type II errors differ from α0, β0.

For n ∈ N, define the random sequence

ξn = C+1[C+,+∞)(Λn) + C−1(−∞,C−](Λn) + Λn1(C−,C+)(Λn) ∈ Z. (5)

Introduce the notation: Ik is the identity matrix of the k-th order; 0m×n is the (m×n)-
matrix all elements of which are equal to 0; 1(u) is the unit step function; 1k is the
k-vector-column all elements of which are equal to 1.

Define the one-step transition probabilities matrix and the initial probabilities vec-
tor for the transient states

P (k) = (pkij) =

⎛⎝ I2 | 02×(N−2)

− − − | − − −−
R(k) | Q(k)

⎞⎠ , π(k) =

⎛⎜⎝ π
(k)
C−+1
...

π
(k)
C+−1

⎞⎟⎠ , (6)

where the blocks R(k), Q(k), and the vector π(k) are

p
(k)
ij =

⎧⎨⎩
∑

u∈U δJ(u;θ0)−J(u,θ1),j−iP (u; θk), i, j ∈ (C−, C+),∑
u∈U 1(C− − i+ J(u; θ1) − J(u, θ0))P (u; θk), j = C−,∑
u∈U 1(J(u; θ0) − J(u, θ1) + i− C+)P (u; θk), j = C+,

π
(k)
i =

∑
u∈U

δJ(u;θ0)−J(u;θ1),iP (u; θk), i ∈ (C−, C+). (7)

For the hypothesis Hk, let t(k) be the expected stopping time of the decision process
(expected number of observations), and B(k) be the ((N −2)×2)-matrix of absorption
probabilities: its (i, j)-th element equals to the probability of absorption at the state
j (acceptance of the hypothesis Hj) starting from the state ξ1 = i ∈ (C−, C+). Let us
denote the i-th column of a matrix W by W(i).

Theorem 1. If under conditions (1) — (2) the true hypothesis is the hypothesis Hk,
and the matrix S(k) = IN−2 −Q(k) is nonsingular, then for the test (3)

t(k) = (π(k))′(S(k))−11N−2 + 1, B(k) = (S(k))−1R(k). (8)
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Corollary 1. Under the Theorem 1 conditions the error probabilities of type I and type
II are α = (π(0))′B(0)

(2) , β = (π(1))′B(1)
(1) .

Let the hypothetical model (1), (2) be under the distortions of Tukey–Huber type
[3]: instead of (1) the obsrvations x1, x2, . . . are taken from the contaminated discrete
probability distribution

P̄ (u; θ) = P̄θ{xt = u} = (1 − ε)P (u; θ) + εP̃ (u; θ), P̃ (u; θ) = a−J̃(u;θ), (9)

J̃(u; θ): U × Θ −→ N0 is a function different from J(·), satisfying
∑

u∈U a
−J̃(u;θ) = 1.

Define the matrix P̃ (k) analogous to (6), substituting P (·) with P̃ (·).
Theorem 2. If the hypothetical model (1), (2) is distorted according to (9), and the
matrices S(k), S̃(k) = IN−2 − Q(k) − ε(Q̃(k) − Q(k)) are nonsingular, then the expected
number of observations t̄(k) and the absorbtion probabilities matrix B̄(k) for the distorted
model differ from the same characteristics for the hypothetical model by the values of
the order O(ε):

t̄(k) − t(k) = ε
(
(π̃(k) − π(k))′ + π(k)(S(k))−1(Q̃(k) −Q(k))

)
×

×(S(k))−1(1 . . . 1)′ + O(ε2); B̄(k) − B(k) = ε(S(k))−1×
×
(
(Q̃(k) −Q(k))(S(k))−1R(k) + R̃(k) − R(k)

)
+ O(ε2),

where Q̃(k), R̃(k) are the blocks of the matrix P̃ (k).

Corollary 2. Under the Theorem 2 conditions the error probabilities ᾱ, β̄ of types I
and II for the distorted model differ from the same characteristics for the hypothetical
model by the values of the order O(ε):

ᾱ− α = ε

(
(π(0))′

(
(S(0))−1

(
(Q̃(0) −Q(0))(S(0))−1R(0)+

+R̃(0) − R(0)
))

(2)
+ (π̃(0) − π(0))B

(0)
(2)

)
+ O(ε2),

β̄ − β = ε

(
(π(1))′

(
(S(1))−1

(
(Q̃(1) −Q(1))(S(1))−1R(1)+

+R̃(1) − R(1)
))

(1)
+ (π̃(1) − π(1))B

(1)
(1)

)
+ O(ε2).

Using the theory presented above the minimax robust sequential test is constructed
in [4]. The generalizations of the results for the case of arbitrary dicrete distributions
and for dependent observations are discussed in [5], [6].

3 Testing of Composite Hypotheses

Suppose a sequence x1, x2, . . . of i.i.d. random variables is observed from a continuous
ditribution with the p.d.f. p(x | θ), where θ ∈ Θ ⊆ R is an unknown value of random
parameter. Consider two composite hypotheses

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1; (10)
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Θ0,Θ1 ∈ Θ, Θ0 ∩ Θ1 = ∅. Assume that the prior p.d.f. p(θ) is known.
One of the possible techniques to test the hypotheses (10) is using of weight functions

proposed by Wald [1]. Introduce the notation:

Wi =

∫
Θi

p(θ)dθ, wi(θ) =
1

Wi
· p(θ) · 1Θi

(θ), θ ∈ Θ, i = 0, 1; (11)

Λn = Λn(x1, . . . , xn) = ln

∫
Θ
w1(θ)

∏n
i=1 p(xi | θ)dθ∫

Θ
w0(θ)

∏n
i=1 p(xi | θ)dθ

. (12)

For testing the hypotheses (10), under the notation (11), (12) the following para-
metric family of tests is used:

N = min{n ∈ N : Λn �∈ (C−, C+)}, (13)

d = 1[C+,+∞)(ΛN), (14)

where (13) gives the stopping rule, N is the random number of the observation, at
which the decision d is made according to (14); d = i means that the hypothesis Hi,
i = 0, 1, is accepted; C− < 0, C+ > 0 are parameters of the test, which are usually
choosen in practice according to (4).

Introduce the discretization parameters

m ∈ N, h =
C+ − C−

m
, C− = C0 < C1 < C2 < · · · < Cm−1 < Cm = C+, Ci = C−+i·h;

Ai = [Ci−1, Ci), i = 1, . . . , m, A− = (−∞, C−), A+ = [C+,+∞). (15)

Lemma. Let for some n ∈ N the parameters of discretization (15) and the p.d.f.
p(x | θ) satisfy the condition:

P{Λ1 ∈ A1, . . . ,Λn ∈ An} > 0, Aj ∈ {A1, . . . , Am}, j = 1, . . . , n,

and the statistic (12) can be presented in the form: Λn = Ψn(x̄
(n)), Ψn(·): R → R is

a (strictly) increasing function. Then ∀k ∈ {1, . . . , n− 1}:

P{Λn+1 ∈ An+1 | Λn ∈ An, . . . ,Λn−k ∈ An−k} = P{Λn+1 ∈ An+1 | Λn ∈ An} +RΛ(h),
(16)

where Aj ∈ {A1, . . . , Am}, j = 1, . . . , n, RΛ(h) =

{
O(h2), An+1 ∈ {A1, . . . , Am},
O(h), An+1 ∈ {A−, A+}.

Proof is based on integral presentation of the left and right parts of (16) and on the
integral theorem about a mean value.

The Lemma states that the Markov property holds for the random sequence Λn

approximately, and gives the accuracy of the approximation.

Introduce the random sequences: Z̄m
n = [Ψn(x̄(n))−C−

h
], n ∈ N;

Zm
n = Z̄m

n · 1(0,m+1)(Z̄
m
n ) + (m+ 1) · 1[m+1,+∞)(Z̄

m
n ), n ∈ N. (17)
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Represent the matrix of conditional state-to-state probabilities of the sequence Zm
n at

the step n in the form:

P (n)(θ) =

⎛⎝ I2 | 02×m
− − − | − − −
R(n)(θ) | Q(n)(θ)

⎞⎠ ,

where R(n)(θ) and Q(n)(θ) are matrices of the sizes m × 2 and m × m respectively.
Denote by π(θ) = (πi(θ)), i = 1, . . . , m, the vector of initial probabilities of the states
1, . . . , m of the sequence Zm

n . Define the matrices:

S(θ) = Im +

∞∑
i=1

i∏
j=1

Q(j)(θ); B(θ) = R(1)(θ) +

∞∑
i=1

i∏
j=1

Q(j)(θ)R(i+1)(θ).

Denote by γHi
(θ) the conditional probability of acceptance of the hypothesis Hi ,

provided the parameter takes the value θ ∈ Θ.

Theorem 3. Under the Lemma conditions, ∀θ ∈ Θ the following asymptotic expansions
hold at h → 0:

E{N | θ} = 1 + (π(θ))′ · S(θ) · 1m + O(h),

γHi
(θ) = (π(θ))′B(i+1)(θ) + O(h), i = 0, 1.

Proof. The proof uses the theory of absorbing Markov chains [7], the results of
Lemma and the relation (15) between m and h.

Corollary 3. Under the Theorem 3 conditions, the error probabilities of type I and II
respectively satisfy the asymptotic expansions:

α =
1

W0

·
∫

Θ0

(π(θ))′B(2)(θ)p(θ)dθ + O(h);

β =
1

W1
·
∫

Θ1

(π(θ))′B(1)(θ)p(θ)dθ + O(h).

Corollary 4. Under the Theorem 3 conditions, the following asymptotic expansions
hold for the mathematical expectations of the sample size:

E{N | θ ∈ Θi} = 1 +
1

Wi
·
∫

Θi

(π(θ))′ · S(θ) · 1m · p(θ)dθ + O(h);

E{N} = 1 +

∫
Θ

(π(θ))′ · S(θ) · 1m · p(θ)dθ + O(h).

Consider now for example the case of Gaussian probability distributions, where

p(x | θ) = n1(x; θ, σ
2
x) = (2πσ2

x)
− 1

2e
− 1

2σ2
x

(x−θ)2
, x ∈ R, p(θ) = n1(θ;µ, σ

2
θ), θ ∈ R; (18)
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σx > 0, σθ > 0, µ ∈ R are known values;

Θ0 = (−∞, θ̄), Θ1 = [θ̄,+∞). (19)

Introduce the notation: D± = C± − ln W0

W1
; x̄(n) = 1

n

∑n
i=1 xi; γ

2 = σ2
x

σ2
θ
;

ln(x̄
(n)) =

√
n ·

x̄(n) − θ̄ + γ2

n
(µ− θ̄)

σx ·
√

1 + γ2

n

, Ψn(x̄
(n)) = ln

Φ(ln(x̄
(n)))

Φ(−ln(x̄(n)))
, (20)

where Φ(·) is a distribution function of the standard normal law.

Theorem 4. For the model (18), (19), in the notation (20), the state-to-state proba-
bilities for transient states of the sequence Zm

n at the step n equal to

p
(n)
ij (θ) =

∫ Ψ−1
n (ih+D−)

Ψ−1
n ((i−1)h+D−)

n1(y; θ,
σ2

x

n
)
∫ (n+1)Ψ−1

n+1(jh+D−)−nx̄(n)

(n+1)Ψ−1
n+1((j−1)h+D−)−nx̄(n) n1(z; θ, σ

2
x)dzdy∫ Ψ−1

n (ih+D−)

Ψ−1
n ((i−1)h+D−)

n1(y; θ,
σ2

x

n
)dy

,

i, j = 1, . . . , m.

Proof consists of direct calculations of the indicated probabilities using properties
of the normal distribution.

Theorem 4 gives the expression for the matrix Q(n)(θ) in the explicit form. The
matrix R(n)(θ) and the vector π(θ) are calculated in the analogous way.

Using Theorem 3 and Corollaries 3, 4, the robustness analysis under distortions of
Tukey–Huber type can be performed following the scheme as in the simple hypotheses
case.
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