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Abstract
We use a local approach and highly robust estimators for the detection of level
shifts in autocorrelated data. The arising detection rules identify shifts with a
short delay, resist some outliers and adapt to time-varying model parameters.
The performance of the rules is investigated using analytical resistances and via
simulations.

1 Introduction

The detection of level shifts in time series has attracted considerable attention. Iterative
procedures based on maximum likelihood have been suggested which try to detect and
distinguish patterns like shifts and several types of outliers sequentially starting from
a model not including any pattern. Such procedures are designed for retrospective
analysis of the whole series, they possibly confuse different patterns, and they can fail
because of several patterns masking each other [5], [7].

Aiming at rules for automatic level shift detection which are not mislead by other
patterns, we use a local approach and highly robust estimators. Median filtering [9] is
popular for approximating the level underlying a time series because of its simplicity
and its robustness against outliers. The median preserves its good properties under
positive autocorrelations [2]. Tests based on differences between medians from subse-
quent time windows standardized by a robust scale estimate provide high robustness
and good detection power [3]. They outperform other rules for shift detection in these
respects. However, they implicitly treat the data as independent, while often we find
subsequent observations to be positively autocorrelated.

Continuing previous work on procedures for highly robust online level estimation
with short delays [1], [4], we investigate the effects of autocorrelations on level shift
detection. We assume that the observed time series can be locally modeled by an
autoregressive (AR) process as described in Section 2. The mentioned median compar-
isons are adapted to AR noise for incorporating autocorrelations in Section 3. Besides
the level and the variance we need to estimate the local AR parameters then, adding
an additional source of variability in the reasoning process. The arising detection rules
are compared to those treating the observations as independent in Section 4.

2 Autoregressive Processes with Level Shifts

Let (X)ien be an autoregressive process of order p (AR(p)),
OB)(Xy—p)=a;; tEZL. (1)
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Here, p is the level of the time series and B is the backshift operator, Bx; = ;1.
The zeros of the characteristic polynomial ®(B) = (1 — ¢ B — ¢oB* — ... — ¢, BP) are
assumed to lie outside the complex unit circle to guarantee stationarity. The a, are
independent identically distributed random variables with mean zero and variance o2.
Often a Gaussian distribution is assumed for the a;. We assume that the process can
be locally modeled by an AR(p) process within all time windows of fixed width n. We

denote the variables in a given time window simply by Xi,..., X,,.

A level shift is an abrupt change of the central location of the time series from one
level to another. If a level shift occurs at a time point 7 € {2,...,n}, we observe a
disturbed process (Z;) instead of the stationary process (X;),

Xt, t<T
Zt_{Xt—i—w, t>71 " (2)

where w is the size of the shift. Let St(T) be a step function, which takes the value one
for t > 7 and is zero otherwise. Equation (2) can be written as

Zy =X, +wS" . (3)

Differencing S\ gives the indicator function I\”, which takes the value one at t = 7
and is zero otherwise, (1 — B)S(” = I!”. Inserting this equation and the definition (1)
into (3) leads to

Zy— = (B)a, +w(l—B)" (4)
Multiplication by ®(B) gives an equation for the observable residuals ¢, = ®(B)(Z;—p):

e, = a+wd(B)(1—B) 17 . (5)
Denoting /(B) = ®(B)(1— B) ' =1— 6B — (,B* — ... we get
Ay, t<T
e = wt ap, t=71 . (6)

—wly_+ az, t>T

3 Level Shift Detection

3.1 Rules derived from Least Squares

Determination of the least squares (LS) estimator @y g of w from (6) is straightforward:

& _ €r — €1€T+1 - £2€T+2 e T gn—Ten (7)
L 1+ B+ 8B+ .+, '

Defining p7 g = (1 + 63+ 63 + ...+ (2_ )", the variance of Wyg reads

2

o

Var(wps) = a = p? 02 ) (8)
T+ 2+ 02 2 T8

61



In case of an AR(1) model, where ®(B) =1 —¢B, we get {(B) =1+ (1 —¢)B+ (1 —
¢)B?* + ..., leading to the estimate

Zet—¢ Z €t

(I} _ t=71 t=7+1
BT -1 - 9)?

and to the standardized test statistic T, for testing if there is a level shift at time 7

Zet—¢ Z €t

_ t=1 t=741
VIt (n—7)1-9¢)0,

The standard deviation o, of the innovations (a;) can be estimated as the empirical
standard deviation of the observable residuals (e;). A simple estimator of ¢ is the Yule-
Walker (YW) estimator, which is the lag-one sample autocorrelation with centering by
the mean z of 2z, ..., z,,

T.

dyw = —

> (z-2)7

t=1

The denominator is calculated from all data. Thus ngSYW almost surely fulfills the
stationarity restriction ¢yw € (—1,1). The price is a bias towards zero for small n.

3.2 Rules derived from Robust Estimates

A robust test for shift detection can be constructed from (6) replacing least squares by
median regression, leading to the estimate

oy = med{er, —eryi1/ly, ... —en/lar} . 9)

In case of a stationary AR(1) process with Gaussian innovations, @, is asymptotically
normal with variance 202 /(4(n—7+1)(1—¢)?) under the null hypothesis Hy : w = 0.

Again, 02 can be estimated from the residuals (e;). We suggest the @Q,, method [§]
for this task, which is based on an order statistic of all pairwise differences. For data
Y1, - .-, Yn it Teads

n/2] + 1> |

Qn(Wr, - vyn) =cn - {lyi —y;| 1 1 <i < j <n}gy Withk:( 5

where ¢, is a finite sample correction to achieve unbiasedness in a Gaussian sample of
size n. (), possesses a high asymptotic Gaussian efficiency of 82% and can be computed
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in O(nlogn) time. In case of ¢ = 0, the detection rule resulting from standardizing
Op by Qn(z1,. .., 2,) corresponds to the median comparison (MC) suggested in [3].

In case of ¢ # 0 we additionally need a robust estimate of ¢. SSD is a highly
robust estimation method for the autocovariances and autocorrelations [6]. It is based
on writing the autocovariance at time lag h as

1
~v(h) = 1 Var( X, + Xi—p) — Var(X, — Xi_p)] (10)
and estimates these variances by @),, applied to zo+21, ..., 2, + 2,1 and 20— 21, ..., 2, —

Zn—1, respectively. Scaling Jssp(1) by the sum of the variances in (10) (see [6]) turns
out to be superior to the scaling by Yssp(0). Accordingly, we use

3 B Q> (o421, it 2ne1) — Q2 (22— 21,y 20 — Zne1)
SSD =
721_1(22 + Zly-++5%n + Zn—l) + Qi-l(ZQ —Z1y---3%n — Z'n,—l) ’

which is guaranteed to lie within [—1,1]. If less than 25% of observations in general
position are replaced by outliers, the terms in the numerator and the denominator are
bounded and bounded away from zero, guaranteeing an asymptotic breakdown point

of 25%.

4 Experiments

To investigate the performance of the detection rules in different situations we perform
some Monte Carlo experiments. Our interest is in small to moderate sample sizes since
we want to use minimal assumptions, allowing the AR model parameters to vary slowly
with time. Accordingly, we apply the detection rules to time windows of moderate
widths. We restrict ourselves to AR(1) models in the following, considering windows
of width n = 29 observations to test whether there is a level shift at 7 = 21. For
estimation of y and ¢ only the first h = 20 observations are used as reference period,
so that a level shift at time 7 = 21 does not influence the estimates. The estimates of
p and ¢ are then plugged into the formulae for the residuals (e;) and the test statistics.

First we generate 50000 time series of length n = 29 from each of different AR(1)
models with ¢ € {—0.9,—0.8,...,0.9} and Gaussian errors. The 99.9% quantiles of the
calculated absolute test statistics are used as thresholds in the following since we aim
at incorrect detection of a shift only once within 1000 time points on average. In this
way we account for the multiple testing done when analyzing long time series. Figure
1 shows that the quantiles of the test statistics increase with increasingly positive
autocorrelations ¢, particularly in case of the MC test based on the AR residuals (e;).

Using these quantiles as thresholds, we generate Gaussian AR(1) series with shifts
of increasing size w = 0.25,0.5,...,10 at time 7 = 21. Figure 1 depicts the percentage
cases in which a shift was detected within 2000 independent time series for each w.
Of course, the least squares methods offers higher power in case of Gaussian data as
considered here, and the test statistics using the original observations lead to higher
power than those based on AR residuals if the data are independent (¢ = 0). In
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Figure 1: Results for n = 29 and 7 = 21: 99.9% quantiles of the absolute test statistics
(top left) and detection power in case of ¢ = 0.0 (top right), ¢ = 0.4 (bottom left) and
¢ = 0.8 (bottom right): LS test (solid), LS test on AR residuals (dashed), MC test
(bold solid) and MC test on AR residuals (bold dashed).
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case of moderate (¢ = 0.4) or large (¢ = 0.8) autocorrelations, the LS test on AR
residuals improves the LS test on the original observations, while the MC test on the
original observations still outperforms that on the residuals. We note that the tests
become liberal with increasing ¢ in spite of using larger thresholds when getting larger
estimates of ¢. The size increases more for those tests showing larger power.

We also investigate the sensitivity of the methods against outliers. First we assume
a shift of size 5 to occur within an AR(1) time series with ¢ = 0.5 and replace the
observation at ¢ = n — 2 by an additive outlier of increasing size 1,2,...,20. Figure 2
depicts the detection power obtained from 2000 simulation runs each. The MC tests
are little affected by a single outlier, while the LS tests loose all their power with
increasing outlier size. One must completely rely on detecting outliers by additional
outlier detection rules when using traditional LS methods, while the robust MC rules
still work well even when some outliers are not detected.

Next we replace an increasing number j = 0,1,...,9 of observations at the end
of a time series generated from an AR(1) model with ¢ = 0.5, again measuring the
percentage cases in which a shift was detected from 2000 simulation runs each, see
also Figure 2. Since our interest is in detection rules which resist as many outliers as
possible, the curves should stay at zero until half of the observations are shifted, and
then suddenly increase to 1. Obviously, the MC tests get close to this ideal, while the
LS tests often indicate a shift already in case of a few deviating observations, and they
can also miss a shift even if the majority of the observations is shifted.
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Figure 2: Results for n = 29 and 7 = 21 if ¢ = 0.5: Power for a 50-shift in case of an
outlier of increasing size (left) and percentage cases in which a shift was detected in
case of an increasing number of outliers of size 6 (right): LS test (solid), LS test on AR

residuals (dashed), MC test (bold solid) and MC test on AR residuals (bold dashed).
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Figure 3: Step function (dashed) overlaid by time-varying AR noise (dots) and several
level estimates: running mean (dotted), running median (bold dotted), running mean
with LS test (solid) and running median with MC test (bold solid).

5 Conclusions

Comparison of standard medians allows reliable shift detection in the presence of out-
liers even in case of (possibly time-varying) autoregressive noise if we choose the thresh-
old for shift detection using a highly robust estimate of the AR parameter. Using such
tests we can improve the shift preservation of running medians and automatically in-
dicate the presence of a shift.

Figure 3 depicts a step function which is overlaid by AR(1) noise with time-varying
parameters ¢; = sin(rt/300) and 0., = /1 — ¢ for illustration. Each observation
is generated to be an outlier of size 6 with 5% probability. Both the LS and the MC
tests with n = 29 and 7 = 21 detect the shifts at t = 60, 120, 180, 240, but the LS tests
additionally detect shifts at ¢ = 22, between t = 158 and t = 163, and at ¢ = 291,
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while the MC tests do so only at ¢ = 160. Both the LS and the MC test improve the
running median and even more the running mean with width 2-94 1 (to get the same
delay of tracking).

The talk will also address the issue of robust shift detection within trend periods.
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