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Abstract
The problem of interpolation (smoothing) of a partially observable Markov

random sequence is considered. For the dynamic observation models, an equation
in the interpolation posterior probability density is derived. This equation has a
certain form of the normalized product of the posterior probability densities in
forward and backward times and differs from its counterpart for static observation
models [3, 1] in an additional equation. The aim of this paper is to consider the
problem of smoothing for the case of unknown distributions of the unobservable
component of the random Markov sequence. For the strongly stationary Markov
processes with mixing and for the conditional density of observation model be-
longing to the exponent family success was reached. A resultant method is based
on the empirical Bayes approach and the kernel non-parametric estimation [5].
The equation of the nonlinear optimal smoothing estimate is derived in a form
independent of the unknown distributions of an unobservable process. Such form
of equation allows one to use the non-parametric estimates of some conditional
statistics given any set of dependent observations. Modeling was carried out
to compare the nonparametric estimates with optimal mean-square smoothing
estimates in Kalman scheme.

1 Problem formulation

By interpolation (smoothing) of a partly observable Markov random sequence
(Sn, Xn)n�1, Sn ∈ Rm, Xn ∈ Rl is meant the problem of constructing the estimates
of the unobservable vector Sk or a known one-to-one function Q(Sk) from observations
xn1 = (x1, ..., xn)

T of a sequence (Xn)n�1 for all k � n. As is well known, the optimal
mean-square smoothing estimate of Q(Sk), k � n, equals the conditional expectation

E(Q(Sk)|xn1 ) =

∫
Rm

Q(sk)π(sk|xn1 )dsk, (1)

where πk(sk|xn1 ) is the conditional posterior probability density of Sk given all observ-
able realizations xn1 which will be called the interpolating posterior density. There are
some ways to calculating this density. One of the interesting ways that is examined
below and referred to as the two-filter smoothing lies in the recursive calculation of the
filtering posterior density wk(sk|xk1) in forward time and the filtering posterior density
w̃k(sk|xnk) in backward time. This algorithm is as follows [3, 1]:

πk(sk|xn1 ) =
f(xk1)f(xnk)

f(xn1 )
· wk(sk|x

k
1)w̃k(sk|xnk)

f(sk, xk)
, (2)
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where the first factor is a normalizing constant, depending only of observations. The
subsequent calculations in (2) may be carried out if all distributions of the composed
Markov process (Sn, Xn)n�1 are known.

This paper is devoted to the interpolation problem with unknown distributions of
the unobservable strongly stationary Markov process (Sn)n�1. The main idea for such
problem decision is founded on the principle of empirical Bayes approach and the theory
of nonparametric functional estimation from weakly dependent observations [5]. The
empirical Bayes approach forces one to find such forms of estimates that are explicitly
independent of the probabilistic characteristics of the unobservable random variables.
This can be achieved, for instance, by using the conditional densities of observations
from exponent density family [2]

f(xn|sn) = C̃(sn)h(xn) exp
{
TT(xn)Q(sn)

}
(3)

where T = (T1, · · · , Tm)T;Q = (Q[1], · · · , Q[m])T; h(·), Q[j](·) and Tj(·), j = 1, m are

the given Borelean functions and C̃(sn) is the normalizing factor.

2 Interpolation equation for the dynamic observa-

tion models

The equation (2) is correct both for static and for dynamic observation models, but
there is some difference in calculating of joint probability density f(sk, xk) in the de-
nominator of this equation. Here we present a brief derivation of the expression for
interpolating posterior density (2) in the case of the dynamic observation model de-
scribed in terms of the conditional density f(xn+1|xn, sn+1), because the intermediate
expression will be useful in the sequel. Let Zk = (Sk, Xk)k�1 be a compound Markov
process. Then by definition the joint probability density

f(sn1 , x
n
1 ) = f(s1, x1)

n∏
k=2

g(sk, xk|sk−1, xk−1), (4)

where (sk, xk) is the value of the random variable (Sk, Xk), and f(s1, x1) and g(·|·) are
a priori and transition densities of (Zn)n�1. Taking into account (4), the interpolating
posterior density πk(sk|xn1 ) is representable as follows:

πk(sk|xn1 ) =
1

f(xn1 )
f(sk, x

n
1 ) =

1

f(xn1 )
f(sk, x

k
1, x

n
k+1)

=
1

f(xn1 )
· f(xk1)wk(sk|xk1) · f(xnk+1|sk, xk) (5)

=
f(xk1)f(xnk)

f(xn1 )
· wk(sk|x

k
1)w̃k(sk|xnk)

f(sk, xk)
,

where the density f(sk, xk) in the denominator of (5) cannot be calculated by means
of the product p(sk)f(xk|sk) because for the dynamic model the conditional density
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f(xk|sk) is not known, whereas the conditional density f(xk|xk−1, sk) is known. There-
fore, for the dynamic observation models we need add to equation (2) a new recursion
equation

f(sn, xn) =

∫
Sn−1

p(sn|sn−1)

∫
Xn−1

f(xn|xn−1, sn)f(sn−1, xn−1)dxn−1dsn−1 (6)

for f(sk, xk) with the initial value f(s1, x1) which is the prescribed
a priori density of the Markov sequence (Sn, Xn).

3 Equation for optimal interpolation estimate

under unknown distribution of unobservable

signal

This section appeared owing to the practical needs to extract a useful signal with
unknown distribution from noise. To construct an optimal estimate under these con-
ditions, one has to return to equation (5). For the sequel we must choose in equation
(5) any factors which depend on the observation of xk. For that the second factor of
(5) is transformed as follows:

f(xk1)wk(sk|xk1) =

∫
Rm

f(sk−2
1 , xk−2

1 , sk−1, xk−1)g(sk, xk|sk−1, xk−1)dsk−1.

But since for dynamic models the transition density g(sk, xk|sk−1, xk−1) =
p(sk|sk−1)f(xk|xk−1, sk), we get

f(xk1)wk(sk|xk1) = f(xk|xk−1, sk)

∫
Rm

p(sk|sk−1)f(sk−1, x
k−1
1 )dsk−1

= f(xk−1
1 )f(xk|xk−1, sk)f(sk|xk−1

1 ). (7)

Obviously, only the second factor of (7) depends on xk.
Let us consider the third factor in (5). Then we get

f(xnk+1|sk, xk) =

∫
Rm

f(xnk+2|sk+1, xk+1)g(sk+1, xk+1|sk, xk)dsk+1

=

∫
Rm

f(xnk+2|sk+1, xk+1)p(sk+1|sk)f(xk+1|xk, sk+1)dsk+1

=

∫
Rm

f(xnk+2, sk+1, xk+1)
p(sk+1|sk)
p(sk+1)

f(xk+1|xk, sk+1)

f(xk+1|sk+1)
dsk+1. (8)

Here only the last ratio
f(xk+1|xk, sk+1)

f(xk+1|sk+1
)

under integral depends on xk. It is this

dependence on xk that does not permit us to construct a nonparametric version of the
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equation (5) for dynamic observation models. However for static observation models
Xn = ϕ(Sn, ηn), where ηn is independent noise, the conditional density of observations
f(xk+1|xk, sk+1) = f(xk+1|sn+1) does not depend on xk and this makes it possible to
perform cancelations in the integral (8) so in this case equation (5) takes the form

πk(sk|xn1 ) =
1

f(xn1 )
· f(xk1)wk(sk|xk1) · f(xnk+1|sk, xk)

=
1

f(xn1 )
f(xk|sk)f(sk|xk−1

1 )

∫
Rm

f(xnk+2, sk+1, xk+1)
p(sk+1|sk)
p(sk+1)

dsk+1

=
λk(x

n
1 without xk)

f(xk|xn1 without xk)
f(xk|sk)f(sk|xk−1

1 )f(sk|xnk+1)p
−1(sk), (9)

where only the second factor depends on xk. Some new definitions for the normalizing
constants are introduced here:

λk = λk(x
n
1 without xk) � f(xk−1

1 )f(xnk+1)

f(xk−1
1 , xnk+1)

,

f(xk|xn1 without xk) � f(xk|xk−1
1 , xnk+1).

Such a form of the interpolation equation allows us to obtain its counterpart which
is independent of the statistical characteristics of the unobserved process (Sn)n�1.

We denote

uk(sk) = f(sk|xk−1
1 )f(sk|xnk+1)p

−1(sk) (10)

and remark once more that uk is independent of xk. Then, equation (9) can be rear-
ranged in

πk(sk|xn1 ) =
λ(xn1 without xk)

f(xk|xn1 without xk)
f(xk|sk)uk(sk). (11)

We integrate this equation with respect to sk and carry over the normalizing factor
depending only on the observations to the left-hand side. Then we get

f(xk|xn1 without xk)

λ(xn1 without xk)
=

∫
Sk

f(xk|sk)uk(sk)dsk. (12)

Assuming now that f(xk|sk) belongs to the exponent density family (3), we differen-
tiate (12) with respect to xk. The possibility of differentiating under the sign of integral
is justified by the assumption of existence of the second prior moment EQT (Sk)Q(Sk),
that is the natural restriction of signal power. The latter is sufficiently to exist of
mean-squired risk of the problem. Differentiation in xk provides the equation

�xk
f(xk|xn1 without xk)

λ(xn1 without xk)
=

∫
Sk

�xk
f(xk|sk)uk(sk)dsk. (13)
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For the exponent conditional density f(xk|sk)

�xk
f(xk|sk) = (�xk

lnh(xk) + �xk
TT(xk)Q(sk))f(xk|sk). (14)

By substituting (14) in (13) and denoting by Q(ŝk) the quantity∫
Q(sk)πk(sk|xn1 )dsk, we find the equation for the optimal mean-square estima-

tor Q(ŝk):

T T(xk)Q(ŝk) = �xk
ln
f(xk|xn1 without xk)

h(xk)
, (15)

where T is the Jacobi matrix with elements ∂Ti/∂x
[j]
k , i = 1, m, j = 1, r.

It is obvious that in the equation for the interpolating estimator the conditional
density of observation f(xk|xn1 without xk) is taken given all available observations
on both sides of k in the future and in the past. The equation (15) is a simple linear
vector equation with respect to Q(ŝk), but it can be solved only under a certain density
f(xk|xn1 without xk). In the classical case, when all the distributions are known, this
density can be calculated and the result will coincide with (1) and (2). But the case at
hand where f(xk|xn1 without xk) cannot be explicitly calculated and its parametric form
is unknown, we may restore it from the observations using the kernel nonparametric
procedures.

4 Nonparametric counterpart for interpolation

estimate equation

In order to solve the problem of interpolating on the basis of one realization xn1 of a pro-
cess (Xk)1�k�n, Xk ∈ Rl, one may proceed to the asymptotically ε-optimal interpolating
procedure [5], in which the truncated conditional density f̄(xk|xk−1

k−τ , x
k+τ
k+1) is exam-

ined instead of the conditional density f(xk|xn1 without xk) � f(xk|xk−1
1 , xnk+1), where

the parameter τ defines the connectivity of the Markov process which approximates
non-Markovian process (Xn)n�1 with weak dependence. The criteria and methods of
seeking τ which were developed in [5] with regard to filtration, can be extended in full
to the interpolation problems. In doing so, the conditional density f(xk|xk−1

k−τ , x
k+τ
k+1)

can be written as the ratio

f(xk|xk−1
k−τ , x

k+τ
k+1) =

f(xk+τk−τ )

f(xk−1
k−τ , x

k+τ
k+1)

,

where the numerator is the marginal density of l×(2τ + 1)-dimensional vector and the
denominator is marginal density of the l×2τ -dimensional vector of observations. By
substituting the multivariate nonparametric kernel estimators

fN(xn1 ) =
1

NhnrN

N∑
i=1

n∏
k=1

r∏
j=1

K

(
(x

[j]
k −X

[j]
k (i))

hN

)
(16)
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for these densities, we get a nonparametric counterpart of equation (15) in the form

T T(xk)Q(τŝk,N) =
�xk

fN(xk+τk−τ )

fN (xk+τk−τ )
− �xk

h(xk)

h(xk)
. (17)

Interpretation of this equation is quite obvious. To construct the interpolating
estimators at the point k, one uses the data which stand before and later of k on
the distance, that do not exceed τ . For a greater τ , that is, a larger volume of data,
calculations of the estimator are more difficult, but at the same time are closer to the
optimal value obtained on the basis of the full data set.

The interpolation estimate from equation (17) is expressed in terms of the loga-
rithmic gradient of the conditional density which is an unstable functional that may
have an infinite value. Therefore, the nonparametric interpolation estimate will be
only consistent. For a stronger convergence, one should construct a piecewise smooth
approximation [5] which under some regularity conditions provides the mean-square

convergence with the rate N− 2ν
2ν+(2τ+1)l , where ν is the order of the least other than zero

absolute moment of the kernel function and l is the dimension of observations vector.

5 Comparison of nonparametric interpolation esti-

mate with optimal estimates in Kalman scheme

We consider for the purposes of illustration an example with a univariate state and
observation models

Sn+1 = aSn + bξn+1, b2 = σ2(1 − a2), (18)

Xn = ASn +Bηn, Sn, Xn ∈ R. (19)

Here, S1, ξn and ηn are the mutually independent random variables with distributions
N{0, σ2} for S1 and N{0, 1} for ξn and ηn, n � 1, and the coefficients a, b, A, B
are given with |a| < 1. Such equations generate a stationary process. For them the
conditional density of observations is Gaussian and, therefore, the Kalman filter and
the forward and backward recursive linear interpolation equations associated with it
can be obtained [4, p. 507].

The Kalman filter.

Ŝk+1 = aŜk +
Ab2 + a2Aγk

B2 + A2b2 + A2a2γk
[xk+1 − AaŜk],

γk+1 =
B2(a2γk + b2)

A2(a2γk + b2) +B2
(20)

with the initial conditions

Ŝ1 =
Aσ2

A2σ2 +B2
x1, γ1 =

B2σ2

A2σ2 +B2
,
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where Ŝk = E[Sk|xk1], γk = E[(Sk − Ŝk)
2|xk1].

Forward interpolation.

Dk = A2(a2γk + σ2(1 − a2)) +B2

S̃k = Ŝk + Aaγk(Xk+1 − AaŜk)/Dk

γ̃k = A2σ2(1 − a2) +B2)γk/Dk, k = 2, ..., n, (21)

where Ŝk = E[Sk|xk+1
1 ], γ̃k = E[(Sk − S̃k)

2|xk+1
1 ].

Backward interpolation.

˜̃Sk = S̃k + ˜̃γkaσ
2(1 − a2)( ˜̃Sk+1 − Ŝk))/dkγk+1

˜̃γk = γ̃2
k(σ

2(1 − a2))2 ˜̃γk+1/D
2
kγk+1, k = 2, ..., n− 1, (22)

where ˜̃Sk = E[Sk|xnk ], ˜̃γk = E[(Sk − ˜̃Sk)
2|xnk ].

A nonparametric interpolation can be constructed using only one observation equa-
tion (19) and a set of data of the length n. For that, we use the nonparametric density
estimate (16) with Gaussian kernel function K(·). In this case, the nonparametric
interpolation equation (15) comes to the following equation:

Ŝτk =
B2

A

d/dxkf(xk+τk−τ)

f(xk+τk−τ)
+
xk
A
. (23)

It should be noted that this equation does not involve the state-space equation param-
eters (18). The nonparametric ratio estimation of density derivative to density itself is
described by the following expression:

(d/dxk)fN(xk+τk−τ )

fN (xk+τk−τ )
=
α1

α2
n

4τ
(2τ+5)(2τ+15)

n−τ∑
i=τ+1

(xi − xk)
τ∏
l=τ

exp

(
−(xk+l − xi+l)

2

2h′2

)
n−τ∑
i=τ+1

τ∏
l=τ

exp

(
−(xk+l − xi+l)

2

2h2

) , (24)

where N = n − 2τ , and α1, α2 are the initial values of the bandwidth parameters
whose optimal values depend on unknown functions. In the course of experiment
these parameters are modified to get a good value of performance (risk, in case under
study). The results of modeling are represented in Fig.1 given n=1000, σ2 = 2, a=0.9,
A=B=1, α1 = 1.9, α1 = 1.2, τ = 3. The relative errors in percentage for each methods
with regard to the risk of optimal smoothing are compiled in Table 1. The experiment
shows that a quality of nonparametric estimators may be superior even to the Kalman
filtering estimates, but is always inferior to the optimal backward interpolation. In
spite of existence of some practical selection methods of the initial values α1, α2 of
nonparametric estimates, the way of completely automatic selection still remains open.

41



940 950 960 970 980 990 1000
−4

−3

−2

−1

0

1

2

Interpolation 

Kalman filter 

Optimal interpolation 

Non−parametric interpolation 

Unobserved realization 

Fig. 1. Comparison of nonparametric smoothing
estimate with optimal estimates.

Table 1:
Relative excess of the empirical estimate risk

over the optimal smoothing risk

N Optimal Kalman Nonpar
50 0% 13.8% 9.6%
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