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Abstract: The main task of this research work is applying 

techniques of wavelet analysis in spectral analysis of 

stationary random processes. Algorithm of calculation 

obtained for the spectral estimate of stationary random 

processes with discrete time via Doubeshies scaling 

function is studied. 

Keywords: Spectral estimate, wavelets methods, scaling 

function Doubeshies. 

1. INTRODUCTION  

One of the main problems in spectral analysis of time 

series is consistent estimate formation of the second order 

spectral density via finite realization of stationary process. 

In numerous researches dealing with mentioned task 

periodogram methods based on inverse Fourier transform 

are used.  

It’s essential to mention that various research 

questions for statistics of consistent estimate obtained by 

periodogram smoothing via spectral windows are 

published, for example, in monographs [1-3] and 

publications [4-10].  

Recently application of wavelet-analysis methods in 

time series study is quite relevant, as obtained by this 

method results are frequently more informative and can 

directly deal with such input data peculiarities which are 

hard to handle with the traditional approach.  

Instead of using a deterministic approach applied 

scientists usually use a stochastic approach to model the 

data and to estimate the energy distribution (e.g. in 

electrical engineering, geophysics, economics or 

neurophysiology). One reason is that in a stochastic setup 

certain fluctuations of the Fourier-transform of the data 

can be interpreted more naturally. 

1. SCALING FUNCTION 
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is called scaling function. 

The system of function 
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Zj , ,Rx Zk  is orthonormal in )(2 RL  and 

function (1) is formed orthonormal basis of spase 

ZjV j , . 

Consider scaling function Doubeshies 

  )(2 RLx   of order NL . Scaling function  x   is 

continuous  and have the next properties (see [4]): 
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where kh , Zk - filter of scaling function, )(supp x  – 

support of scaling function.   

Table 1. Example of  Doubeshies scaling function (order 

3,2  LL  filter’s 

2L  

0h  0.48296291314453410 

1h  0.836516337378077 

2h  0.2241438680420134 

3h  -0.1294095225512603 

3L  

0h  0.3326705529500825 

1h  0.8068915093110924 

2h  0.4598775021184914 

3h  - 0.1350110200102546 

4h  - 0.0854412738820267 

5h  0.0352262918857095 

On fig 1-2 is illustrated some examples of scaling 

function Doubeshies with compact support. 
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Fig.1 –Scaling function 

Doubeshies. 3L , 
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Fig.2 –Scaling function 

Doubeshies. 4L , 
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Fig.3 –Scaling function 

Doubeshies. 6L . 
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Fig.4 –Scaling function 

Doubeshies. 7L . 
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   13,0 supp  x  
We can constructed 2 periodical scaling, using 
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scaling function Doubeshies  via formula:  
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Function (1) is formed orthonormal basis of spase  2L . 

On Fig.5 illustrated some examples of 2 periodical  

scaling function. 
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Fig. 5 – 2 periodical scaling function. 

2. SPECTRAL ESTIMATE  

Let  tX , Zt , be a wide-sense stationary stochastic 

process with   0tEX , Zt , belonging to a set of 

random processes  2,,,, CLf  .  

The set  2,,,, CLf   is defined as the set of wide-

sense stationary processes X(t), , Zt , whose spectral 

density is )(f ,   , , having a fourth-order 

semiinvariant spectral density   3214 ,, f , , j  

3,1j , and such that for fixed П  the spectral density 

f   satisfies  LLipf   and the fourth-order semi-invariant 

spectral density is bounded by a constant 02 C . 

The definition of the class  2,,,, CLf   can be 

found in Zhurbenko [9]. I t contains processes with 

spectral densities whose peaks and troughs increase with 

T , for example AR process with peaks. 

For a process  2,,,, CLfX  , the rate of 

convergence of the mean-square deviation of a linear 

wavelet estimate of the spectral density is studied in [6].  

The coefficients of the asymptotically dominant term, 

which depend on the smoothness of the spectral density, 

are calculated for some scaling functions and data 

tapering windows you can find in [5]. 

Thus the information on value   according to the 

aprioristic information on spectral density for investigated 

stochastic process. Such information, as a rule, undertakes 

on the basis of supervision over several realizations for 

the concrete phenomenon. 

Our theoretical results in this paper are also used for 

developing computational algorithms for wavelet 

estimates of the spectral density. These algorithms enable 

us 

1) to select a data tapering windows; 

2) to choose a scaling function; 

3) to compute the level of decomposition. 

4) in order to construct the estimate minimizing the mean 

square deviation, depending on the sample length and 

the smoothness of the spectral density. 

As spectral estimate )(f  let’s consider statistics: 
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- data tapers, it’s behavior is studied sufficiently in [2, 6]. 
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2 periodical scaling function; 

   kxx J
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, , 

 ,...2,1,0 0NJ ,  ,  x  - scaling function 

Rx ; We have to mention, that the results cited in this 

article are obtained with condition of data tapers variation 

restriction.  

In the spectral analysis we can use the next data taper: 

Function  xh ,  1,1x , bounded variation,   1xh  

in point 0x , and   0xh  for 1x , and    0xh  for 

0x . 

Function  xh , bounded variation, with   1xh  in 

point ,
2

1
x and   0xh  for 0x  и 1x .  

Examples of data taper functions are more low 

resulted: 

1. Hemming’s window: 

   ,cos46.054.0 xxh   1,1x .

 2. A triangular window:  

  xxh 1 ,  1,1x . 

2. Rice’s, Bohner’s, Parzen’s  window: 

  ,1 2xxh   1,1x . 

A heuristic explanation is the following. 

Straightforward calculation gives for the expectation of 

the wavelet estimation: 

           dxdxKФxffE

П

J

T

2

,ˆ
2

 

where 

     




J

k

kJkJJK
2

1

,,
~~,  

  
     

  02 2

11
2 T

TT
T

H

xHxH
xФ




   –  

two kernel function. One is depended from scaling 

function, second from data taper. 

In paper [6] is proved, that for first moment’s estimate 

(1) we have: 
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In fact, one can prove, that 
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for a sufficiently smooth data taper and for a scaling 

function higher order. 

And for dispersion is valid: 
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Wavelet estimate   f̂ , define by formula (1), is 

consistent in mean-square sense estimate of spectral 

density  f , П  for all , 1J RT2  where 

10   ,  R0 , is some fixed constant.   

3. CALCULATION 

Step 1. Chooze data taper  thT . Data taper   
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we can find from condition of minimization of value: 
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we can calculate, using  standard numerical methods;  

Data taper, choosing via this method is optimal 

in sense of minimum mean-square deviation of modified 

periodogram. 

Thus, the advantages of data tapers could also be 

established theoretically. An important problem is the 

choice of data taper. No rigorous results exist for this 

problem. No rigorous results exists for this problem. It is 

obvious, that the choice depends on the true (unknown) 

spectral density, in particular on the relation of the peaks 

and troughs to each other. 

Step 2. Calculate modified periodogram  TI , via 

formulas  (3) and (4), using data taper  xh ,   1,1x , 

which we find on step 1. 

Step 3. Choose scaling function: 
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where  =   NR  LxxL  , ,  - the set of Doubeshies 

scaling function. 

On choose of scaling function two characteristics is 

influence: maximum of scaling function and it’s support. 

Step 4. Calculate level  J   

  TJ 2log , 

where    the whole part of number. 

Step 5. For calculation of initial factors we will put 

TJ 0 . 

Step 6. Coefficients kJ ,0
̂  calculate, using formula of left 

rectangle (see step 6.1), or using quadrature formula (see 

step 6.2). 

Step 6.1.  Calculate coefficients via formula of left 

rectangle: 
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where 1N quantity of pats for integration interval 

( TN 1 ),  12,0 0 
J

k . 
Step 6.2.  Calculate coefficients via quadrature formulas  
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k ; where  method of calculate of abscissas 

kx rk ,1  and weight  k , rk ,1  is considered in 

paper [7].  

Table 2. Abscissas kx , rk ,1  and weight k , rk ,1 , of 
quadrature formulas  for Doubeshies system  of order 

3,2L  . 

 k  kx  k  

2L  
3r  

1 0.565179  0.899173 

2 1.565179  0.132858 

3 2.565179 -0.032031 

2L  

4r  

1 0.247825  0.268749 

2 0.747825  0.561228 

3 1.247825  0.298997 

4 1.747825 -0.128975 

2L  
5r  

1 0.253425  0.276273 

2 0.753425  0.557197 

3 1.253425  0.296560 

4 1.753425 -0.130903 

5 2.253425  0.000872 

 

 k  kx  k  

3L  

3r  

1 0.804695  0.990491 

2 2.804695  0.012666 

3 4.804695 -0.003156 

3L  

4r  

1 0.701350  0.817228 

2 1.701350  0.264924 

3 2.701350 -0.097581 

4 3.701350  0.015430 

3L  1 0.661075  0.747720 
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5r  2 1.661075  0.384507 

3 2.661075 -0.174764 

4 3.661075  0.048801 

5 4.661075 -0.006264 

Step 7. Calculate coefficient  kJkJ ,1,...,,
ˆˆ

0  , using 

modified formulas 
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where kh , Zk - filters of  Doubeshies scaling function.   

Step 8. Build wavelet estimate   f̂ , using formula   

   




J

k

kJkJf
2

1

,,
~ˆˆ  

on level J . 

Estimate  f̂ , constructed via considered algorithm 

is optimal in minimum biases square.  

We remark that exist other spectral estimates that have 

similar resolution properties as the tapered periodogram. 

Those statistics are usually non linear  / non quadratic and 

therefore very difficult to investigate theoretically. 

4. USING WAVELET ESTIMATE IN 

PARAMETRIC MODEL 

An alternative  to nonparametric spectral density 

estimation is the fitting of a parametric spectral density 

As an example  we now discus the fitting of an 

AR model [5]. 

Let’s consider an autoregressive process of p-th order 

 ,...2,1N p : 
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where t  is a sequence of independent, identically 

distributed random variates,  ,...2,1,0 Zt . Further 

on we’ll assume that t ~ ),0( 2N .  

Theoretical spectral density of the process AR(p) 

looks like: 
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Taking in consideration [3] we can rewrite: 
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One possible approach is to minimize a distance between 

the theoretical parametric density and the periodogram 

with respect to the parameters. A natural distance function 

comes from considering the asymptotic Kullback-Leibler 

information divergence. It is possible to prove that the 

asymptotic information divergence of a process with true 

spectral density  f  and a Gaussian model with spectral 

density  f  is 

   
 
 

constd
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f
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
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
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ln
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1
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Since  f  is unknown we use the wavelet estimation 

instead and an empirical distance 

   
 
 
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



 

 

 d
f

f
fL T

T

ˆ
ln

4

1
. 

Minimizing )(T L with respect to   gives the 

estimate T̂ . For AR process  f  is given by (7), 

 Tf̂  is given by (1) and calculate via algorithm from 

part 3 from this paper. 
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