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Abstract: The basic parameters of the non-primitive 

Hamming codes are investigated. It is shown that many of 

them have a minimum distance exceeding the 

constructive. Thus dimension and speed of these codes 

can have quite comprehensible values. The method for 

correction of the multiple non-primitive Hamming codes 

is developed. The simplicity and efficiency of this method 

realization make sure that a class of linear codes can 

found its actual application in new telecommunication 

systems. 
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1. THE CORRELATION OF PRIMITIVE AND 

NON-PRIMITIVE HAMMING CODES 

The Hamming codes play more historical than 

practical role in noise-resistance coding. Indeed, there are 

the first codes [1] which have appeared almost 

simultaneously with the revolutionary Shannon K. ideas 

in the information theory [2]. The Hamming codes were 

an evident illustration to the Shannon K. theoretical 

principles on the error correction capabilities of any 

complexity in the information transfer in channels with 

noise, if the information previously skillfully adds 

redundant. Disappointingly feeble ability to adjust just 

single error in each transmittable word-message awoke 

creative thought of researchers to develop new codes. 

And more than 10-years incubation period was replaced 

in the 60s of XX century by explosion of the new ideas, 

new codes and new methods in the theory and practice of 

noise-resistant coding [3]. And the perfect Hamming code 

has graced pages of the first monographs and textbooks in 

the new direction of the applied mathematics. 

In the «Bible of encoders» terms [3] the hamming 

code belongs to the primitive codes of Bose-Choudhori-

Hokvingema (BCH codes) class, as a kind of minimal 

complex representative of this codes family. The specific 

Hamming code Cx over a Galois Field, as a rule, 

characteristic 2, i.e. over GF(2
m
), m>1, has length n=2

m
-1, 

and sets the parity-check matrix )...1( 1̀ nn

xH   where 

a – a primitive element of the field )2( mGF , the root of 

some irreducible primitive polynomial )(xp  of the level 

m  over ZZ 2/ . Each element 
i  of the matrix n

xH  is 

actually a binary column of the coordinates 
i  in 

basis 220,1,,...,, 21  mmm i .  

The code n

xC  with given parity-check matrix 

certainly has minimum distance 3, and can actually 

correct only vectors of errors that weight is equal 1. 

By definition [3] the arbitrary BCH-code tC is set by 

parity-check matrix  

10,)...,,,( )12(3   niH Titii

Ct
 , 

where   , 1  or   is the divisor of the 

number 12 m . Thus, the presence of the binary BCH-

codes of any virtually odd length is tolerance. If 1 , 

the BCH-code is no longer primitive. Accordingly it is 

also possible to consider the non-primitive, and the 

Hamming codes of length  /)12(  m  with parity-

check matrix of )...,,,1( 1  xH  for   . 

The only general fact, known about the non-primitive 

Hamming codes, said that their minimum distance 

potentially can be more than 3. And what happened? The 

setting resource of these codes is too insignificant, the 

task of on-syndromic chasing for each regular vector-

error not looks too optimistically. However, there is a 

reason for optimism. 

2. THE EXISTENCE OF THE NON-PRIMITIVE 

HAMMING CODES 

According to Euler's theorem for each odd  

)(mod121 )( nn n   . Thus 1)(  nn  and 

1)(  nn  only in the case of simple values n . Perhaps 

there is an integer   that is smaller than )(n and such 

that )(mod12 n . The minimum value m  of these   is 

called the exponent of two modulo n . Method by 

contradiction shows that m  is the factor )(n . 

Comparison of )(mod12 n  means that 12 m  

divided on n . According to [3], the field )2( mGF  in that 

case is the field of the BCH-code tC  definition provided 

that ntm . This field sets the matrix 
tCH . 

By construction, if 1t  the inequality of nm  is 

fulfilled automatically. It follows from this 

Theorem 1. For each natural integer 1n there is the 

(non-primitive) Hamming code of the length n  . 

Proof. As we have noted for the given n  the index of 

twain nnnm  1)(  and value 12 m  are divided 

into n  or nm 12 .  

Let snm 12  for some integer 1s . Then the 

matrix )...,,,1( 1 n

xH  , for the primitive element 

 of the field )2( mGF  and s  has size 

nmnm  , . It can be considered as the check matrix of 

the some binary linear code. In terms of [3] this is the 

BCH-code tC  with 1t , i.e the (non-primitive) 

Hamming code that length is equal n  

3. THE MINIMUM DISTANCE OF THE NON-

PRIMITIVE HAMMING CODES. 

Theorem 2. The minimum distance d  of the non-

primitive Hamming code of the length n  is in the range 

),min(3 mpd  ,where p is the smallest prime divisor 
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of the length n . 

Proof. Let the code n

xC is defined over the 

field )2( mGF . If nm 12 , than the code n

xC is 

primitive. According to the universal theorem [3] the 

minimum distance of the linear code is equal d  if and 

only if, when any 1d  columns are linearly independent 

in the parity-check matrix H , but there are d  linearly 

dependent columns. Any two columns are different in the 

matrix of primitive Hamming code, but there are always 

three linearly dependent columns. 

The non-primitive Hamming code can be obtained 

from the primitive by decimation or ejection of 

sufficiently large number of columns of the primitive 

code matrix. Not surprisingly, the minimal distance can 

increase at the same time. 

Let p  is a divisor of the odd number n . Then 

 pnp ,3 . Vector c  with nonzero coordinates at the 

positions numbered 
1

)1(...,,1,1





 p  is a code word. 

This means that 0
T

cH . 

Indeed
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 as 

112  msnspp   . 

We found p  columns of matrix n

xH  that binary sum, 

i.e. linear combination is equal 0. This means pd  . 

Corollary. If the length of the Hamming code divided 

into 3 than 3d . 

Corollary means that third part of the non-primitive 

Hamming codes has modest traditional decoding 

capabilities, i.e. corrects only one error. There are the 

codes of length 1,63  kkn . 

According to the theorem 2 the greatest minimal 

distance and the greatest correction possibilities should be 

expected the non-primitive Hamming code of prime 

length pn  . Here you can specify a class of the codes 

with maximum possible minimum distance pnd  . 

There are codes with 1)()(  ppnm  . Their 

parity check matrix has size pp  )1( . These codes have 

dimension 1k and contain only two code words 01 c  

and )1...11(2 c . If the distance is peak they cannot 

transfer any information. Interest in them is no more than 

theoretical. There are 10 such codes of the length 11, 13, 

19, 29, 37, 53, 59, 61, 67, 83 in the range of length from 9 

to 99. 

Nevertheless the codes of 3d  and 1k  and even 

with information transfer speed 
2

1


m

k
  exist. The 

perfect Golay code, that has 

7,12,11,23  dkmn and 
2

1

23

11
  and correct 

errors of the weight 1-3, belong to the non-primitive 

Hamming code class. Search of such codes involves 

significant computing. Even the simple check of theorem 

2 (look above) requires the calculation of m , the 

construction of the Galois field )2( mGF , forming the 

parity check matrix n

xH , and finally solving a 

combinatorial problem with the columns of the matrix. 

In this way we found a lot of codes with nd 3 , and 

even with 7d . For example, the Hamming codes of 

length 71,47  nn  have a minimum distance 11, can 

correct all of the random errors of the weight from 1 to 5 

inclusive, and the rate of both is greater than 0.5. 

This is  

197905715

71

4

71

3

71

2

71

1

71  CCCCC   

error vectors for the code 71

xC  that is 197905 times 

more the number of single errors, correction of which is 

guaranteed a priori. 

4. THE NON-PRIMITIVE HAMMING CODES 

DECODING METHOD OF ORBITS. 

Through the efforts of the Belarus coding school there 

was developed the theory of syndrome norms [4, 5]. 

Applying the automorphisms of codes, it introduces the 

new parameter - the syndrome norm. The syndrome norm 

))(( eSN  of the error vector e , that is calculated from the 

coordinates of the syndrome )(eS , determines the orbit 

J , e  belongs to J . Each orbit is well-structured. We 

find an error much simpler there than in the whole array 

of corrected errors. The theory of syndrome norms is 

effective for the BCH-codes tC  where 1t . It is not 

applicable for the Hamming codes because the matrix n

xH  

is weak structured. However, the weaker analogue of this 

theory for the Hamming codes can be constructed. 

Obviously, the Hamming code n

xC  with parity-check 

matrix )...,,,1( 1 nn

xH   is cyclic. This means that the 

operator ),...,,()...,,()( 111  nnn eeeeee   belongs to 

the group of code automorphisms n

xC , generates a cyclic 

subgroup }...,,,{ 2 en    in this group. This group 

divides all error vectors into the orbits. Typically, the 

orbits contain n  error vectors and have next structure: 

)}(,...),(,{ 1 eeee n  . The syndrome of each error 

vector e  is Tn

x eHeS )()(   - the element of Galois field 

)2( mGF .  

Theorem 3. )())(( eSeS   . 

Theorem 3 implies the orbit method of error 

correction by the Hamming codes. It should be 

remembered that the minimum distance 12  td  or 

22  td  guarantees the paired difference of all error 

syndromes of weight t...,,2,1 . We will divide error set K  

that is corrected by the code into orbits. In each orbit J  

we fix generatrix Je  and its syndrome JZ

JeS )( . In 

storage there is a list of all orbits of set ГК, their 

generatrix Je and syndromes )( JeS .  

Let the telecommunications System (TCS) functions 
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on the basis of the Hamming code n

xC . Let the next 

message x  is received, its syndrome is 0)( xS . 

Therefore Jeex  . We select orbits J  from the list ГК 

for finding error vector e  in message x  and calculate 

SeSxS J /)(deg)(deg  , where s  is taken 

from S  . There is the one orbit *J ГК, for which   

is integer. When we find it it will be the end of the 

algorithm, we will find the error vector )( Jee   

5. CONCLUSION.  
The practice of noise-resistant coding shows that it is 

required multiple errors correction in the real 

communication channels on codes of the real length. The 

primitive Hamming codes, that are capable to correct 

single errors, had played its historical role, it became 

beautiful object of all textbooks. However, the non-

primitive Hamming codes in many cases have a fairly 

large minimum distance, the effective error correction 

method has been developed for them that named the orbit 

method. The relative simplicity of decoding algorithms 

allows the use of the non-primitive Hamming codes in the 

modern real-TCS.  
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