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Abstract: The paper presents the new approach to the 

supervised gene selection by means of gene clustering for 

the microarray data, which belong to more than two 

phenotypes (classes). The main distinction from the 

previous approaches, that are based on the splitting the 

multi-class task into several binary ones, is the 

application of the HUM (hypervolume under the 

manifold) score, that guides the search for the most 

discriminative gene clusters that simultaneously 

differentiate all the classes. The results of comparative 

analysis with other methods shows the advantages of our 

approach both in classification rate of the new samples 

and in the lower number of gene clusters. The application 

of our approach to a randomly permuted data shows that 

the identified structure is more than just a noise artifact. 
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clustering. 

1. INTRODUCTION  

Microarray technology is widely used to identify the 

molecular characteristics and distinctions of several tissue 

samples in order to reveal new subtypes of disease, e.g. 

cancer or to predict the phenotype of sample tissue on the 

basis of several gene expression values. It’s well known 

that the microarray datasets contain a small number of 

samples and a large number of genes, and only small 

portion of genes are related to the discrimination of the 

sample classes. Therefore the important task of the 

analysis of microarray datasets is to reveal the most 

important genes, the so-called biomarkers, which are 

closely connected to the distinction of phenotypes of 

disease. There are a plenty of proposed methods for the 

informative features selection for classification [1], 

including the gene selection methods [2-5]. These 

methods are mainly concentrated on the selection of 

individual genes [3, 4] or the genes subsets [2, 5], that are 

considered individually. In microarray data analysis, there 

can be a large number of highly discriminative subsets 

containing only a couple of genes, and the composition of 

such subsets can greatly vary as a result of a different 

choice of the subset of samples or the noise in the 

microarray data. Therefore it is more reliable and robust 

to direct the search of discriminative gene clusters and to 

base the prediction of a new sample on the basis of the 

collective behavior and coordinated expression of a group 

of genes, rather than that of the individual genes. 

Therefore we propose the approach, that is based on 

supervised clustering scheme, developed in [6] and allows 

constructing gene clusters, taking into account the sample 

class labels of the training set. The major differences 

between our approach and the one, proposed in [6], is the 

possibility to provide the search for gene clusters for 

multi-class problem in one run, avoiding its separation 

into several binary classification tasks. Such an approach 

allows getting more compact gene clusters, which are able 

to simultaneously discriminate more then two classes. To 

estimate the importance of the individual gene or gene 

cluster for classification we apply the HUM 

(hypervolume under the manifold) score or the extension 

of ROC analysis on multiple classes, described in [7]. 

Using the proposed clustering scheme allows to identify 

most discriminative gene clusters, where the average 

expression of genes in the clusters constitute the 

predictors and are further used to define the phenotype of 

the unknown tissue sample. The output of our approach is 

the number and the composition of the gene clusters, 

which consists of only small number of genes. As in [6] 

the greedy strategy is used for the searching the best 

composition of each following cluster, according to the 

objective function, which measures the cluster’s ability 

for phenotype discrimination and relies on the HUM score 

calculation. It achieved similar or better prediction 

accuracy than the methods in [10] and the approach in [6] 

in our validation process. 

We have also investigated the ability of the HUM 

score to reveal the really discriminative gene clusters 

instead just some structure by chance. 

The output of our algorithm is thus valuable for 

cancer-type diagnosis. At the same time it is very 

accessible for interpretation, as the output consists of a 

very limited number of clusters, each summarizing the 

information about a few genes. Thus, it may also reveal 

insights into biological processes and give hints on 

explaining how the genome works. 

We first describe the proposed approach for 

supervised clustering of gene-expression data, then apply 

the procedure to publicly available microarray dataset and 

test the results of its predictive potential. 

2. DESCRIPTION OF THE APPROACH  

The input data is the data matrix  ijX x  with 

dimension n m , where  n – the number of experiments, 

m – the number of genes. Each i th individual experiment 

or the sample tissue belongs to class iy  and the data for 

the experiment constitutes the sample expression profile 

 1, ,i i imx x x . For K  cancer phenotypes the class 

label iy  is the integer value in interval  1, K  and kn  is 

the number of samples of k th class. The aim of 

microarray data analysis is to reveal the discriminative 

genes and to construct the classifier for K  disease 

subtypes, which splits the set X of gene expression 

profiles into K  disjoint subset (in the case of crisp 

classification) 1, , kA A  such that for each sample with 
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gene expression profile  1, ,i i im kx x x A   the 

predicted class is k . The classificatory is constructed on 

the basis of “past” experience, i.e. on the basis of a 

training set with “a priori” known class labels 

    1 1, , , ,
L Ln nL x y x y . After construction of the 

classifier on L  the class labels , 1,i Ty i n  of test set 

 1, ,
TnT x x  can be predicted. When the class labels 

of the test set are known beforehand, they can be 

compared with the predicted ones in order to estimate the 

classification error. 

According to the clustering algorithm the classifier, 

constructed on the discriminative subset of genes q m  

is modeled by the conditional probability: 

1 2
( | ) ( , , , )

qC C CP Y k X f X X X  , (1) 

where f  – nonlinear function from qR  to [0,1] , 

1 2{ , , , }qC C C  – functional groups of clusters of genes 

with 
1

{ } {1, , }
q

ii
C m


  and ,i jC C i j  , 

iCX R  – an average expression value of gene cluster 

iC . 

As the construction of the model (1) is non-trivial task 

therefore the authors in [6] have adopted the greedy 

procedure, which we also follow. The procedure relies on 

growing the cluster incrementally by adding one gene 

after the other. During clustering the forward search is 

followed by the backward search in order to remove non-

important genes, that where wrongly added to the cluster 

at the previous steps. The decision of the inclusion of a 

new gene in the cluster is made under supervision of class 

labels and is based on the cluster ability to discriminate 

classes. As opposed to estimation score in [6] we 

proposed to use a HUM score [7], that allows estimating 

the ability of gene cluster to discriminate between more 

than two classes. HUM is a direct extension of the area 

under the ROC curve (AUC) and was employed in many 

foregoing works [8-9]. If the expression values of a 

particular gene or cluster yield exact separation of the 

classes, then the expression values for all tissue samples 

are strongly ordered according to the class label, i.e. if 

1 2
, , ,

Kn n nX X X  – the sets of i th gene values, 

corresponding to classes 1, K , then there exist such a 

permutation of class labels ( ), 1,k k K  , that 

(1) (2) ( )KX X X     . In such a case the HUM score 

is maximal and is equal to 1HUM  . If the gene 

expression values are independent of class labels, then the 

value of HUM score equals 
1( !)K 
. 

The supervised clustering procedure thereafter 

consists in following steps: 

1. Start with the entire matrix  ijX x  with 

dimension n m . The values of each gene are normalized 

to zero mean and unit variance. 

2. Determine the HUM score of every gene i , that is, 

every n -dimensional vector of observed expression 

values   1, ,i i inx x x . 

3. Define the first gene in cluster C  as gene with 

maximal HUM score. 

4. Perform the forward search of gene cluster C . 

Average the gene cluster expression profile 
1 2( , , , )n

C C C Cx x x x  with each gene profile 

 1, ,i i inx x x  ,

1
( ), 1, ,

| | 1
C i i jj C

x x x i m
C 

  


 . 

As candidate to the inclusion in cluster select the gene 
*i  for which * ,,

( ) max ( ( ))i C iC i
HUM x HUM x . 

5. Repeat step 4 until the *,
( )

C i
HUM x  score for the 

selected gene *i  is not lower than the previous 

( )CHUM x score. 

6. Perform the backward search, consequently 

selecting the possible genes for exclusion. For this 

calculate the set of HUM scores of a cluster without gene 

i , define * ,,
( ) max ( ( ))i C without iC without i

HUM x HUM x . 

After that if  

*,
( ) ( )CiC without i

HUM x HUM x , (2) 

exclude the uninformative gene *i  from the cluster C . 

7. Repeat step 6 until the inequality (2) is no longer 

valid.  

8. Repeat steps 4-7 until the stabilization of the cluster 

composition and optimization of the HUM score. 

9. If more than one cluster C  is desired, discard the 

genes in the former clusters from X  and restart the 

algorithm at step 3 with the reduced matrix. 

During the algorithm execution the gene cluster 

construction is performed together with gene selection for 

classification. The new samples can be further classified 

on the basis of the constructed predictors – the average 

gene cluster values. 

3.  HUM SCORE RELEVANCE FOR GENE 

CLUSTER FORMATION 

We have tested the significance of distinction between 

the HUM score of the analyzed data and the ones, 

received for the unstructured random-noise gene-

expression data. If the distinction is significant, than the 

hypothesis that the clusters found on the original data by 

the supervised algorithm are just a noise artifact can be 

rejected. 

To perform the test we have simulated L  random-

noise gene-expression datasets by permuting the set of 

original class labels *( ) *( )

1( , , ), 1,l l

ny y l L . After that 

each of the original gene expression profiles was allocated 

to the permuted class label, resulting in independent pairs 
*( ) *( ) *( )

1 1 2 2( , ),( , ), , ( , )l l l

n nx y x y x y  for each 1, ,l L . The 

supervised clustering procedure is then applied 100L   

times on such data with randomly permuted responses. 

For every permuted set of responses, a single cluster (q = 

1) was formed on the entire dataset and both its final 

HUM score were recorded. Empirical distribution of the 

HUM scores from permuted data together with the HUM 

score for the original data set are depicted in Fig. 1. 

According to Fig. 1 we can reject the hypothesis with the 

p-value of zero. 
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Fig. 1 – Histograms showing the empirical distribution of 

HUM scores for the leukemia dataset (AML/ALL 

distinction), based on 100 bootstrap replicates with 

permuted response variables. The vertical line marks the 

values of score with the original response variables 

4. DATASET AND EXPERIMENTAL RESULTS 

We have tested the proposed approach on the real 

Leukemia dataset. As a rule the dataset is considered 

consisting of two classes – 47 samples of acute 

lymphoblastic leukemia (ALL) and 25 samples of acute 

myeloid leukemia (AML) [10]. In order to validate our 

approach for multi-class task we have taken into account 

the two subtypes of ALL: 38 samples of B-cell ALL and 

9 samples of T-cell T-ALL, analyzing the classification 

into 3 classes. All the samples are characterized by the 

expression of 7129 genes. After data preprocessing with 

thresholding and filtering the 3571 genes are selected for 

further analysis. 

To estimate the prediction potential of the approach 

we have applied the following scheme. The data was 

randomly split into a learning set comprising two thirds, 

and a test set containing the remaining third of all n  data 

samples. The learning set was used to perform the gene 

clustering according to the proposed approach and to 

construct classifier using two methods: nearest-neighbor 

classifier (NNC) and diagonal linear discriminant analysis 

(DLDA). After that the prediction of class labels for the 

test sets was performed using two classifiers and the 

number of clusters 1,10q  . The misclassification rate is 

then calculated as the averaged fraction of predicted class 

labels which differ from the true one. The whole 

procedure was repeated 100 times and the results are 

depicted in Table 1. The box plots and median-quartile 

plots of the misclassification errors for each individual 

value of q  are presented in Fig. 2.

Table 1 – Classification error according to the random splitting study for two classifiers (our approach) 

 Value q= 1 q= 2 q= 3 q= 4 q= 5 q= 6 q= 7 q= 8 q= 9 q= 10 

DLDA Median 0,125 0,083 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 

1 quartile 0,125 0,052 0,042 0,042 0,042 0,042 0,042 0,000 0,000 0,000 

3 quartile 0,167 0,125 0,115 0,115 0,073 0,073 0,083 0,042 0,042 0,042 

NNC Median 0,1667 0,0833 0,0625 0,0625 0,0833 0,0417 0,0417 0,0417 0,0417 0,0417 

1 quartile 0,1250 0,0833 0,0417 0,0417 0,0417 0,0417 0,0417 0,0417 0,0417 0,0313 

3 quartile 0,2500 0,1250 0,1250 0,0833 0,0833 0,0833 0,0833 0,0833 0,0833 0,0833 
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Fig. 2 – Box plots of the misclassification errors for the leukemia data set (3 classes), based on the 100 random divisions into 

the learning and test sets: a) DLDA; b) NNC
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According to Fig. 2 to construct the best classifier (in 

accuracy) it’s sufficient to select 3 clusters of genes as an 

input for DLDA and for NNC. 

We have performed the supervised clustering for all the 

set of 72 samples. The Fig.3 depicted the projection of the 

samples on two first revealed cluster coordinated. It can 

be seen that the first two coordinate perfectly separate two 

classes of leukemia. 

We have compared the experimental results with the 

approach in [6], where the multi-class task is considered 

as the set of binary tasks, the corresponding classification 

accuracy of the test sets are depicted in Table 2 and in 

Fig. 4. 
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Fig. 3 – The leukaemia dataset in the space of average 

expression values of two gene clusters 
 

Table 2 – Classification error according to the random splitting study for two classifiers (approach [6]) 

 Value q= 1 q= 2 q= 3 q= 4 q= 5 q= 6 q= 7 q= 8 q= 9 q= 10 

DLDA Median 0,167 0,083 0,083 0,042 0,042 0,042 0,042 0,042 0,042 0,042 

1 quartile 0,125 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 

3 quartile 0,250 0,125 0,125 0,083 0,083 0,083 0,083 0,083 0,083 0,083 

NNC Median 0,167 0,083 0,083 0,063 0,042 0,042 0,042 0,042 0,042 0,042 

1 quartile 0,083 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,042 

3 quartile 0,250 0,125 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 
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Fig. 4 – Box plots of the misclassification errors for the leukemia data set (3 classes), based on the 100 random divisions into 

the learning and test sets: a) DLDA; b) NNC 

According to the Fig. 4 to construct the best classifier 

(in accuracy) it’s sufficient to select 4 clusters of genes as 

an input for DLDA and 5 clusters for NNC. It is 

noticeably more than in our approach. 

In order to compare the results with the approach [6] 

we have made all the process of supervised clustering and 

classifier construction on the standard training set of 38 

samples and have tested the result on 34 left independent 

samples. According to the results of the random splitting 

study we have used the best predictor set and classifier for 

the independent subset (approach [6] – DLDA with 

4q  ; our approach – DLDA with 3q  ). 

For approach [6] we have received 1 error in the test 

set (T-ALL sample was wrongly attributed to the AML 

subtype), classification results according to our approach 

are error-free. Moreover the number of the gene clusters, 

received according to [6] – 9 clusters (Table 3) – is higher 

than in our approach – 3 clusters (Table 4). 
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Table 3 – The composition of the gene clusters according to the approach [6] 

Class 1 (B-cell) versus 2&3 Cluster 1 X82240_rna1_at (TCL1 gene (T cell leukemia)) 

Cluster 2  L33930_s_at, M89957_at, K01911_at 

Cluster 3 U05259_rna1_at, U50743_at, D88422_at, M96326_rna1_at, 

M27891_at (cystatin), M74719_at 

Cluster 4 L08895_at, J03077_s_at, M11722_at, M21005_at, L20971_at, Z22548_at, 

M57731_s_at 

Class 2 (T-cell) versus 1&3 Cluster 1 X59871_at, X03934_at, L08895_at 

Cluster 2  M38690_at, M74719_at, U23852_s_at 

Cluster 3 M28826_at, X00437_s_at, HG987-HT987_at, J04164_at, L19686_rna1_at 

Cluster 4 X82240_rna1_at (TCL1 gene (T cell leukemia)) 

Class 3 (AML) versus 1&2 Cluster 1 X95735_at (zyxin), M27891_at (cystatin), J04615_at 

Cluster 2  M16336_s_at (CD2 CD2 antigen), M89957_at, U23852_s_at, M27783_s_at 

Cluster 3 L33930_s_at 

Cluster 4 X82240_rna1_at, D87433_at, X77737_at, M57731_s_at, M57466_s_at, M84526_at, 

U57341_at, U10485_at, X59871_at, U05259_rna1_at 

Table 4 – The composition of the gene clusters according to our approach 

Class 1 (B-cell) versus Class 

2 (T-cell) versus Class 3 

(AML) 

Cluster 1 M27891_at, X59871_at, M28826_at, J03077_s_at 

Cluster 2  M74719_at, M92934_at, X82240_rna1_at, K01911_at 

Cluster 3  X95735_at, X76223_s_at, X00437_s_at, Z84721_cds2_at 

 

We have received better misclassification rate than in 

[10], where the authors compared the efficiency of 

different discrimination methods for several datasets 

including 3-class leukemia dataset, but unlike our 

approach they have considered 40 preliminary selected 

genes. 

5. CONCLUSION 

We have proposed an approach to supervised 

construction of the gene clusters from the microarray 

experiments. The main difference of the proposed 

approach from the previous similar one [6] consists in the 

utilizing the HUM measure to estimate the discriminative 

power of each individual gene or gene cluster for the case, 

when dataset belongs to more than two classes. Our 

procedure is potentially useful in the context of medical 

diagnostics, as it identifies groups of interacting genes 

that have high explanatory power for given tissue types, 

and which in turn can be used to accurately predict the 

class labels for the new samples. The result of comparison 

with previously proposed methods [6, 10] shows the 

advantages of our approach in number of clusters and 

accuracy of the classifier, constructed on the basis of gene 

cluster values. Moreover each gene cluster is able to 

perfectly discriminate between more than two classes 

simultaneously, that is not possible in [6], where each 

multi-class task splits into several binary tasks and the 

constructed thereafter gene clusters are responsible to 

differentiate each individual class from all the other. Such 

an approach complicates the clustering process and 

increases the number of clusters that are sufficient for 

accurate classification of the new samples. We have also 

shown that an application of our algorithm to a randomly 

permuted data shows that the identified structure is more 

than just a noise artifact. 

In our further study we aim to moderate the time-

consuming process of HUM score calculation. 
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