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Abstract

The problem of the probability density estimation by using n size sample of stationary process is
considered. We investigate conditions which the coefficients in approximation of Mean Integrated
Squared Error should satisfy to receive the consistent estimator. The clear approximation formula of
optimal bandwidth for dependent data is given.

1 Introduction

Let X be a stationary process with marginal density )(xf  and let n
iiX 1}{ =  be a sample of size n

from this process at the discrete times D+D-+D+D+ ntnttt ,)1(,,2, K , where D  is  the  time
between observations. The nonparametric estimator of f(x) is defined by
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where h is a smoothing parameter or bandwidth and K(x) is a kernel function which is a symmetric
probability density [1]. In nonparametric kernel estimation it is supposed [1] that

0®h , ¥®hn  as ¥®n .                                                     (1)
The statistical properties of fh(x) depend closely on the bandwidth h [1]. To evaluate the optimal

h it is necessary to choose a measure of distance between the true density )(xf  and the estimator
)(xf h . Especially common choice is the Mean Integrated Squared Error (MISE) [2]
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2 Approximation and order of coefficients

Since it is impossible to find optimal bandwidth in explicit form from expression (2), we determine it
approximately. Using of Taylor's expansion for (2) in a neighborhood of point 0=h , choosing from
this representation only those terms which depend on h (up to the order 4h ) gives following
approximation for MISE(h):
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where fj(t, s) is a joint density of (Xk, Xk+j), knjjnk -=-= ,1,,1 .
The necessary condition of extremum may be written as
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Thus, the optimal bandwidth for a sufficiently great size of sample is determined from the
equation (4).
Provided that 0>a , 0>b , the solution of this biquadratic equation is
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Assuming (1), let's find conditions which a  and b  should satisfy. There are two situations:
Situation 1.
The data arrive online and interval D . remains constant. By using (3), we identify the order of a

and b .  It  is  possible  to  show  that  at  this  situation kan~a , ]0,1[-Îk , mbn~b , 0£m , where
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. Let's find conditions which a  and b  should satisfy to provide (1) as

¥®n . The result depends on the behavior of the radicand in expression (5) as ¥®n :
Case 1. The second term in radicand tends to zero as ¥®n .
Case 2. The second term in radicand tends to infinity as ¥®n .
Case 3. The second term in radicand tends to constant c as ¥®n .

Then using (1) and asymptotic expression of radicand we have m
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inequalities:
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The solutions of these sets are shown in figure 1(left side): domain a for case1, domain b for case 2,
boundary between domains a and b for case 3.

Situation 2.
There is a realization of process X on time interval ],[ Ttt + . Then to construct a nonparametric

estimation  of  density  we  use n observations of process X from this finite interval. Time D  between
observations may be determined as )1( -=D nT .  It  is  obvious,  that 0®D  as ¥®n . Joint density
function in definitions of a  and b  tends to marginal function which is multiplied by delta-function (at
least, for finite values j), that is



)()(),( xyxfyxf nj -d¾¾ ®¾ ¥® .
Let's notice, that in definitions of a and b  we have xy = . As a result a  and b  tend  to  infinity  as

¥®n . Therefore we have that kan~a , 0>k  and mbn~b , 0>m .
Let's find conditions which a  and b  should satisfy to provide (1). We can consider three cases

the same as at Situation 1. The asymptotic expressions for h are identical. We have the following sets
of inequalities:
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The solutions of these sets are shown in figure 1 (right side): domain a for case1, domain b for case 2,
boundary between domain s a and b for case 3.

Figure 1: Admissible domains for orders of a and b . Left side for situation 1. Right side for situation 2.

3 Formula for optimal bandwidth

Thus,  to  find  the  optimal h in case 3 of Situation 2 it  is  necessary  to  solve  the  equation  of  the
fifth degree, which results from (4). To simplify a problem, we will construct simple approximation
formula for a case 3. We evaluate optimal parameter for function )(hg  (3) by use of expression
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To find unknown constants a and b we substitute *h  in  the  equation  of  the  necessary  condition  of
extremum (4). Let’s rewrite (4) as
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and decompose 5* )(h  and 3* )(h  by use the Binomial theorem. Substituting these decompositions in
the equation (6) gives
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The first terms on the right hand side and at the left hand side are equal to unity. Equating second
terms we get the following formula for optimal bandwidth:
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Let's determine orders of a  and b  to satisfy conditions (1). It is easy to show, that performance
of  the  these  conditions  for  the  first  and  the  second  terms  of  (7)  results  in  the  following  set  of
inequalities
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It is obvious that formula (7) may be applied not only to a case 3 of Situation 2.
Let's determine now as far as bandwidths determined under the formula (7) and as the

solution of the equation (4) are close to each other. Using (6), it is easy to prove:
Proposition 1. Let the condition b£a 2

gh ,  where  hg is the bandwidth obtained by

minimization of function g(h) (3), be held. Then the bandwidth *h evaluated by formula (7) satisfies to
the inequality gg hhh 2.18.0 << * .

Proposition 2. Let the conditions b>a 2
gh  and 5 2

22 nb
n

£
b
a  be held. Then the bandwidth

*h evaluated by formula (7) satisfies to the inequality gg hhh 2.17.0 << * .

Thus, we are convinced that for the cases that were considered in propositions 1 and 2
formula (7) can be used as approximation of optimal bandwidth hg.
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