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Abstract 

 
The multifactor model “with square root” is discussed in details. For such model, the 

representation of state variable process in the integral form is derived and its covariance ma-
trix is found. The special attention to the problem connected with the tendency for the term 
structure of long-term forward rates to slope downwards is given.   

For multifactor models with square root the following results are derived: representa-
tions of the forward rate curve through the volatility of the state variable process  and through 
the volatility of  zero coupon yield process are obtained; the expectations, variances and co-
variances for the forward rates and the yield process volatility are calculated; the expectation 
and the variance for the derivative of forward rate are found; the Brown − Schaefer 
approximation for the spread of forward rate is examined. 

As examples two three-factor models (BDFS and Chen models) are examined. On the 
basis of the estimates of parameters of these models received by empirical way the numerical 
analysis including calculation of covariance matrixes of process of state variables, calculation 
of an expectation of the local variance of yield process and calculation of the variance of zero 
coupon yield have been fulfilled. 

 
Keywords: multifactor model of term structure, forward rate curve, volatility of zero 

coupon yield, affine model, square root model CIR, term structure of long-term forward rates. 
 

 Introduction 
 

One of classical problems of financial economics is the analysis of behavior of the yield 
on default free bonds depending on their maturities. At the certain assumptions it is possible 
to use mathematical model of available yield curve to extrapolate it to obtain the future val-
ues of yield rates. The forward rates can be obtained on the basis of knowledge of term struc-
ture of discount bonds (see details in Hull (1993)). Properties of forward curves for one factor 
models of term structure in details are considered in many papers. Here we shall refer only to 
Medvedev (2003), Medvedev (2004), as present paper is direct extension of these results on 
multifactor model “with square root”. 

The area of term structure for long-term forward rates was subjected to detailed re-
search by Brown and Schaefer (2000), which have discovered that the new information about 
the yield term structure can be received from the analysis of the long-term end of the forward 
rate curve. Using a two factor Gaussian model they had shown that the long term forward rate 
curve is downward sloping whenever the volatility of the long term zero coupon yield is suf-
ficiently high. They had verified this for real data on US Treasury STRIPs.    

In the present paper the analysis of the forward rate curve is made for class of affine 
multifactor models of the term structure that are generated by the short term (riskless) interest 
rate model “with square root”.   
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Analysis of Multifactor Model 
 
Let us assume that the dynamics model of riskfree rates r(t) belongs to a class of models 

“with square roots” and is characterized by n state variables which form a vector Z = (z1, ..., 
zn)Т, i.e. r(t) = r(Z(t)). For affine model it is necessary that r(Z) was affine function of state 
parameters, i.e. r(Z) = α + φТZ,  φТ = (φ1, φ2, …, φn). For such n-factor model with constant 
coefficients the state variables follow the stochastic differential equation  

dZ = K(θ − Z) dt + σ >Γ+δ< Z  dW(t),                                 (1) 
where K is (n×n)-matrix of the mean reversion coefficients; θ is n-vector of stationary expec-
tations of state variables Z; dW is q-vector of increments of standard Brownian motions; 

][ >Γ+δ<σ Z  is (n×q)-matrix of volatilities; σ is (n×q)-matrix; δ is q-vector, Γ is (q×n)-
matrix of coefficients of state variable influences on volatility; symbol < δ > designs a diago-
nal matrix, on main diagonal which there are components of vector δ. This means that 
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It is assumed that for equation (1) the existence and uniquely conditions are held (see 
Duffie and Kan (1996)). By classification Dai and Singleton (2000) this model belongs to 
class Аm(п), m is rank of the matrix Γ, and for the specification in the maximal variant the 
model demands to set (n×n)-matrix, (n×q)-matrix, (q×n)-matrix,  q-vector, and n-vector, i.e. 
n(1 + 2q + n) + q parameters. 

If the state of process Z at some moment of time s < t is known then such model allows 
to express a vector of state variables Z(t) in the integral form as process 

Z(t) = U(t − s) Z(s) + (I − U(t − s))θ + ,)()()(∫ >Γ+δ<σ−
t

s

udWuZutU  

where U(t) is the fundamental (n×n)-matrix of solutions for the ordinary differential equation 
U′(t) = – KU(t), U(0) = I, I is identity (n×n)-matrix. The stationary regime of such process 
exists if all eigenvalues of matrix K are negative or have the negative real parts (in this case at 
t → ∞ matrix U(t) → 0). For a stationary regime (s → − ∞) the expression for process Z(t) 
becomes more simple 

Z(t) = θ + ,)()()(
0
∫
∞

−>−Γ+δ<σ utdWutZuU  

whence follows that the unconditional expectation and the unconditional covariance matrix of 
process Z(t) are calculated by formulae 

Е[Z(t)] = θ,   Cov[Z(t)] =                     (2) ,)]([)(
0

TT∫
∞

σ>θΓ+δ<σ duuUuU

If the eigenvalues of matrix K are designed as βi < 0, 1 ≤ i ≤ n, and the diagonal matrix 
with elements ехр(βi t) on the main diagonal is designed as  then the fundamental matrix 
of solutions U(t) can be presented in the form U(t) =  where М is a matrix the col-
umns of that form the eigenvectors of the matrix K. Note that if matrix K is diagonal with 
elements k

teβ

1−β MeM t

i > 0 on the main diagonal then М = I, βi = − ki, and U(t) is equal to . kte−

The multifactor model of state variables (1) generates an affine model of term structure 
which can be written according to Duffie and Kan (1996) as 
  



 P(Z, t, τ) = exp[A(τ) − ZTB(τ)],                                          (3) 
where Z = Z(t) and function A (τ) and vector B (τ) can be determined from the following dif-
ferential equation for price P(Z, t, τ): 
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 are  n-vector row and (n×n)-matrix of derivatives of 

the price with respect to the state variables respectively, r(Z) = α + φТZ  is the riskfree interest 
rate at the moment of time t, λ − q-vector of risk premium parameters at the assumption that 
the risk premium are defined by a relation  λ>Γ+δ<=λ ZZ )( , and tr(A) is a trace of ma-
trix А.  

Under these conditions the functions A(τ) and B(τ) satisfy the ordinary differential 
equations 

A′(τ) = − α − B(τ)Т[Kθ  − σ<δ> λ] + B(τ)Тσ<δ>σТB(τ)/2,  A(0) = 0, 
B′(τ) = φ − [K Т + ΓT<λ>σT] B(τ) − ΓT<B(τ)Tσ>σTB(τ)/2,   В(0) = 0.                 (5) 

Special interest is represented with functions B(τ) because through them  the forward 
rates are expressed. However the solution of the vector equation (5) (vector Riccati equation) 
with respect to function B(τ) is not expressed in a closed form and the functions B(τ) can be 
determined only numerically.  

 
Forward Rate in Multifactor Model 

 
The forward rate curve f(τ|Z) ≡ − ∂ ln P(Z, τ)/∂τ  take the form 

f(τ|Z) = r(θ) − B(τ)Tσ< δ + Γθ>λ −[ B(τ)Tσ< δ + Γθ>σT B(τ)]/2 +

+ [φT −                (6) ),](2/)()()()( TTTT θ−Γ>τσ<στ−Γ>λ<στ−τ ZBBBKB

and the spread of forward rates  f(τ2|Z) − f(τ1|Z)  for τ2 = τ + ω, τ1 = τ − ω: 
∆f(τ, δ) ≡ f(τ2|Z) − f(τ1|Z) = 

= − ∆В(τ,ω)Т[σ< δ + Γθ>λ + σ< δ +Γθ>σT∇В(τ,ω)/2] − 

− ∆В(τ,ω)Т[K + σ< λ>Γ + (Z − θ),                        (7) ]2/),(T Γ>ωτ∇σ<σ B

where are used designations ∆B(τ,ω) ≡ B(τ2) − B(τ1), ∇B(τ,ω) ≡ B(τ2) + B(τ1).
As the multifactor model is derived by the vector of the Brownian motions the yield 

process volatility is determined by the vector-row σy(τ) = B(τ)Тσ >Γ+δ< Z /τ that is sto-
chastic. For the forward rate it is possible to write the formula through the yield process vola-
tility as follows: 

f(τ|Z) = r(Z) + .2)()()()()( T2T τστστ−λ>Γ+δ<τστ−−θτ yyy ZZKB            (8) 

The multifactor model of the riskfree interest rate process reflects the real dynamics 
more precisely however it demands to set the greater number of parameters and the explicit 
expression for the forward rate, volatility of yield process and unconditional variance of yield 
to maturity have rather bulky form. Therefore in order to obtain the visible results we will 
accept some simplifying assumptions. 

 Note first that as the state variables Z it is necessary to choose only such variables, 
which influence on level of the riskfree interest rate. That is the vector φ should have only 

  



nonzero components. In this case without breaking a generality it is possible to represent the 
riskfree interest rate more simply by equivalent state variable: r(Z) = α + Z~T1 , where 1 is a 
vector formed by units. Indeed let Z~ ≡ ΦZ, where Φ ≡ < φ >  is a diagonal matrix the compo-
nents of main diagonal of which are components of vector φ. Then for the vector of state 
variables Z~  the equation of model (1) is obtained as 

),(~~~)~~(~~ tdWZdtZKZd >Γ+δ<σ+−θ=                                   (9)                        

where ≡ ΦK ΦK~ −1, θ
~  ≡ Φθ σ, ~  ≡ Φσ, and W(t) is the same process as in model (1). The 

state variable Z~  have also the useful property that the eigenvalues of a matrix K~  are the 
same, as for K, and  if a matrix K is diagonal then  K~ = K. Other advantages of transition to 
the state variables Z~  we note l  ater.

Consider a special case when the matrix K is diagonal. In this case as it has above been 
told the elements of main diagonal are eigenvalues and the fundamental matrix of decisions 
U(t) =  is too diagonal. Let a matrix σkte− >θΓ+δ< σТ has elements [σ >θΓ+δ< σТ]ij, 
1 ≤ i, j ≤ n. Then according to representation (2) elements of the covariance  matrix of the 
state variables Z are
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where  ik  ≡  > 0 is element of the main diagonal of a matrix K.  iiK )(
The zero coupon yield y(τ) according to representation (3) is linearly connected to state 

variables Z by the relation  τ y(τ) = − A(τ) + ZTB(τ). Whence it follows that the variance of 
yield  y(τ) it is calculated by the formula  

Var[у(τ)] = .                                        (11) 2T /)]()(Cov)([ τττ BZB

The equation (5) for vector function B(τ) for the examined case it is possible to write in 
the more convenient form  

b′(τ) = 1 − [ ТK~ + Γ~ Т<λ> σ~ Т]b(τ) − Γ~ Т< b(τ)Тσ~ >σ~ Т b(τ)/2,   b(0) = 0. 

where b(τ) ≡ Φ−1B(τ) is independent on vector φ. So if to pass to the state variables  then it 
is possible to rewrite the formulae (10) and (11) as follows 

,~Z

у(τ) = [− A(τ) + ZTB(τ)]/τ = [− A(τ) + Z~ Tb(τ)]/τ. 

Var[у(τ)] = = 2T /)]()(Cov)([ ττΦΦτ bZb 2T /)]()~(Cov)([ τττ bZb . 

[Cov( Z~ )]ij  = ,
]~~[ T

ji

ij

kk +

σ>θΓ+δ<σ
  1 ≤ i, j ≤ n.                               (12) 

By similar way it is possible to rewrite the formulae (6) and (7) for the forward rates 
and the forward rate spread. 

From equality (6) it is possible to see that the forward rate can be presented in the form 
where the last term is stochastic and others are deterministic. Therefore, it is possibly to write 
that 

E[f(τ|Z)] = r(θ)  ,2/)]()([)( TTT τσ>θΓ+δ<στ−λ>θΓ+δ<στ− BBB

Var[f(τ|Z)] = Ψ(τ) Cov(Z) Ψ(τ)Т, 
where for brevity it is designed  

  



  Ψ(τ) ≡       ].2/)()()()([ TTTTT Γ>τσ<στ−Γ>λ<στ+τ−φ BBBKB
Derivative of forward rate curve for multifactor model 
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where for brevity it is designed  Θ ≡  .)(T Γ>τσ<σ+Γ>λ<σ+ BK
From these formulae it is possible to see that the average slope of forward rate curve 

will be negative if functions B(τ) and their derivatives positive. Probability that for some term 
to maturity τ the slope of forward rate curve will be negative in this case can not be calcu-
lated because the probability distribution of state variable vector Z is unknown. Note only 
that for the random variable of type bTZ (b – some vector) Leippold & Wu (1998) have ob-
tained the characteristic function. 

 
The Brown − Schaefer Approximation 

 
At the analysis of the forward rate curves for long term yields Brown and Schaefer 

(2000) have offered approximation of the forward rate spread in this area in the form of sim-
ple dependence on the zero coupon yield volatility. This approximation is obtained if in the 
formula (7) to neglect the terms that depend linearly on B(τ). So the offered approximation is 
equivalent to that as the forward rate spread the following expression is used.  

∆f(τ,ω) ≡ f(τ2|Z) − f(τ1|Z) ≈  = 2/)()( TT τ∇σ>θΓ+δ<στ∆− BB

= − .2/)]()([~~)]()([ 12
TT

12 τ+τσ>θΓ+δ<στ−τ bbbb                          (13) 

Then the remainder ε =  of the forward rate spread 
it is possible to consider as some error of approximation. It has the following properties. If 
the risk premium parameters to accept equal to zero (λ = 0) then the expectation of ε will be 
equal to zero and its variance is equal  

)]([)( T θ−+λ>Γ+δ<στ∆− ZKZB
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If a probability distribution of ε and its moments would be known it would be possible 
to construct confidential intervals and set the accuracy of approximation (13) at the set level 
of trust. Because the probability distribution is unknown it is possibly only to note that ap-
proximation will be better if a standard deviation of ε (i.e. dε  ≡ ]Var[ε ) will be smaller. In 
particular, if the order of smallness of dε will be essentially higher than the order of the 
smallness of ∆f(τ,ω) then approximation can be considered as satisfactory.  

Thus, accuracy of approximation will depend not only on the matrix K, the covariance 
properties of state variables, but also from functions of term structure B (τ). We shall con-
sider this problem for two known multifactor models with a square root. 

 
  



Three factor models 
 
Model BDFS (P. Balduzzi, S. Das, S. Foresi, R. Sundaram, 1996) relates to class А1(3), 

i.e. is three-dimensional model, in which as variables of a state are taken the short-term rate 
r(t) (we shall consider its as variable Z1), its local expectation θ(t) (a variable Z2) and its local 
variance ν(t) (a variable Z3). Then in our designations the BDFS model can be written as 
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where θ1, θ2, θ3 – stationary expectation of corresponding variables of the state; k1, k2, k3, σ13, 
σ33, ζ – positive constants; W – a vector of independent processes of the Brownian motions. 

Thus, the specification of the equation (1) for this model is following 
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The Chen model (Chen, 1996) relates to class А2(3). The state variables at this model 
are the same processes r(t), θ(t) and ν(t), as in model BDFS, but the specification of the equa-
tion (1) for Chen model is another: 
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Because matrixes K in both models are identical, the fundamental matrix of decisions 
for these models will be the same. Calculations give such result: 
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Matrixes σ< δ +Γθ>σT that together with U(t) determine the covariance matrix (2) for 
examined models have the following form. 

For model BDFS: 
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For Chen model: 
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Therefore the covariance matrixes (2) for these models have the following form. 
  



For model BDFS: 
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For Chen model: 

Сov[Z] = .
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Thus, to calculate the variance (14) now it is necessary to determine only functions of 
term structure B(τ) from the equations (5). We shall consider this problem in the simplified 
variant, when a vector λ of risk premium parameters is equal to zero. Then the equations (5) 
for examined models are reduced to the following. 

For model BDFS: 
B1′(τ) = 1 − k1B1(τ),   B1(0) = 0; 

B2′(τ) = 1 + k1B1(τ) − k2B2(τ),   B2(0) = 0; 
B3′(τ) = 1 − k3B3(τ) − B1

2(τ)/2 − (σ13B1(τ) + σ33B3(τ))2/2,   B3(0) = 0.           (15) 
The solutions of first two equations are easy. Functions B1(τ) and B2(τ) are calculated in 

an explicit form: 
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However the equation (15) for B3(τ) in an explicit form it is not possible to solve. 
For Chen model: 

B1′(τ) = 1 − k1B1(τ),   B1(0) = 0; 

B2′(τ) = 1 + k1B1(τ) − k2B2(τ) −   B,2/)(2
2

2
22 τσ B 2(0) = 0;                 (17) 

B3′(τ) = 1 − k3B3(τ) −  −    B2/)(2
1 τB ,2/)(2

3
2
33 τσ B 3(0) = 0.               (18) 

In this case the function B1(τ) is again determined simply, as well as in (16). But func-
tions B2(τ) and B3(τ) cannot be determined in the explicit form. 

The equations (15), (17) and (18) are the Riccati equations with variable factors and can 
be solved by the numerical methods only. 

 
Numerical analysis 

 
Now we use the formulae obtained above for calculation of some characteristics of 

models BDFS and Chen. 

  



In the paper Dai & Singleton (2000) the empirical estimates of parameters for model 
BDFS and Chen model are reported (see Tables II and III). These data are following (desig-
nations are modified to our designations): 

 
Model k1 k2 k3 θ1 θ2 θ3 ζ 
BDFS 2,05 0,0523 0,602 0,14 0,14 0,000156 0,000113
Chen 2,19 0,0757 1,24 0,0416 0,0416 0,000206 0 
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Such data are sufficient for calculation of some characteristics. Further we give some 
examples that confirm this. At calculations it was accepted that risk premiums are absent 
(λ = 0). 

Covariance matrix of processes Z(t) of the state variables are calculated by formulae (2) 
in following form 
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Cov[Z]Chen =  .
1026,300

0000695,0000672,0
0000672,0000719,0
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⎟
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The expectation of local variance of the yield process is determined by following formula 
E[σy(τ)σy(τ)T] = B(τ)Тσ σB(τ)/τ>θΓ+δ< 2. The results of calculation of local variance of the 
yield process are presented on Figure 1 for model BDFS and Chen model. 
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Figure 1.  The expectation of local variance of the yield process E[σy(τ)σy(τ)T] 
as the function of term to maturity τ for BDFS model and Chen model. 

 

  



The variance of zero coupon yield Var[у(τ)] is determined by expression (11). The re-
sults of calculation of Var[у(τ)] are presented on Figure 2 for BDFS model and Chen model. 
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Figure 2.  The variance of zero coupon yield Var[у(τ)] as the function  

of term to maturity τ for BDFS model and Chen model. 
 
By the similar way it is possible to calculate other characteristics of models.  
 

Conclusions 
 

In this paper the detailed analysis of multifactor models with stochastic volatility (“with 
square root”) is resulted for the state variables that are generated by the equation (1). The 
problem connected to a negative slope of forward rate curves for the long term zero coupon 
yield rates was especially closely studied.  

For multifactor models with stochastic volatility the following results are derived: 
• representations of the forward rate curve through the volatility of the state variable 

process  (6) and through the volatility of  zero coupon yield process (8) are obtained;  
• the expectations, variances and covariance matrixes for the forward rates and the yield 

process volatility are calculated;  
• the expectation and the variance for the derivative of forward rate are found;  
• the Brown − Schaefer approximation for the spread of forward rate is examined. 

As examples two three-factor models (BDFS and Chen models) are examined. On the 
basis of the estimates of parameters of these models received by empirical way the numerical 
analysis including calculation of covariance matrixes of process of state variables, calculation 
of an expectation of the local variance of yield process (Figure 1) and calculation of the vari-
ance of zero coupon yield (Figure 2) have been fulfilled. 
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