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Abstract 
 
Processes of the interest rates and other financial indexes in continuous time are 
usually modeled in the literature by stochastic processes with independent increments. 
Such processes are described by the stochastic differential equations and are the 
Markov processes. As it follows from the theory the stationary stochastic process is the 
Markov process (in the wide sense) if and only if the normalized correlation function 
is exponential. In other words the stochastic processes with independent increments 
generate the data series with the exponential correlation functions. At the same time 
the correlation functions of real data series have often non-exponential correlation 
functions. For example such functions are typical for the US Treasury Security Yield 
Rate, Internal Rate of Yield on UK 2.5 % Consols, UK Dividend Yield Rate for Shares 
and other financial data series. Therefore in order that to fit a mathematical model to 
some real financial data it should be used a stochastic processes with dependent 
increments. Such processes have more flexible structure that allows obtain the 
necessary properties. In present paper it is proposed a way for the construction of the 
process with dependent increments. For that it is supposed that the stochastic process 
of the interest rate (or other financial index) has a derivative of the some order and this 
derivative is the process with independent increments. In other words the stochastic 
process of the interest rate is described by the stochastic differential equation of some 
order more than first. It results in the more relevant mathematical models. If the 
coefficients of stochastic differential equations are constant then the solutions in the 
explicit form are derived. On practice the derivatives of the interest rate processes are 
non-observed therefore the practical forms of solutions can not include the values of 
derivatives. Therefore it is discussed a problem of exclusion of these values from 
solutions. It is shown that these solutions exist and they are determined on discrete set 
of time instants. The case when the first derivative of process of interest rate has 
independent increments is described in details. The offered approach is illustrated by 
the analysis of actual time series of the yield rates of the US Treasury Securities. 
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Introduction 
 
Usually the stochastic models that describe a dynamics of interest rates in continuous 
time are based on the stochastic differential equations of first order (Shimko,1992). 
These equations generate the processes with independent increments that are Markov 
processes. In a case when such processes are stationary and their observations are 
produced at discrete instants, these equations result in an autoregressive models of  the 
first order. In turn such Markov processes have only positive correlation, and 
according to the known Doob theorem (Doob, 1953) their correlation function is 
exponential. At the same time the analysis of real interest rate time series shows that 
their correlation functions take not only positive values, but also and negative, and 
they are like not an exponential curve, and rather damping cosinusoid. The author have 
checked this on the following financial time series: 
  

• UK Dividend Yield Rate for Shares, December 1918 - June 1995 (919 
monthly values); 

•  Internal Rate of Yield on UK 2.5 % Consols, June 1900 - June 1995 (1146 
monthly values); 

• US Treasury Security Yield Rate: short-term debt instruments - three-
monthly (13 weeks), semi-annual and annual bills; intermediate term debt 
instruments - 2 -, 3 -, 5 -, 7 -, 10-year notes; long-term debt instruments - 
20- and 30-year bonds; January 1991 - January 1996 (1250 business days);  

 
The more detailed information about these computations is contained in  

Medvedev (1998). The examples of such correlation functions are represented on 
Figure 1. Such behaviour of correlation functions shows that mathematical models that 
lead to Markov processes are not always adequate to real financial time series. This 
problem was already considered in the literature (Ait-Sahalia, 1997; Medvedev, 1997). 
In this connection it is of interest to construct such mathematical models, which 
adequately would reflect properties of real financial time series. 

In the present paper it is offered for description of financial processes to use 
other model of the stochastic differential equations, were the  derivative of the 
financial process of some order has independent increments but  not itself process. It 
allows to use the stochastic differential equations of any order that result in difference 
equations for financial time series with dependent increments. Such time series have a 
more wide spectrum of correlation functions and can be more exact mathematical 
models of real financial time series.  

The paper is organized as follows. In Section 1 the idea of composition of the 
stochastic differential equations of arbitrary order is described and their solutions in 
the integral form are given. Section 2 is devoted to the stochastic differential equations 
with constant coefficients. In Section 3 the difference version of these equations is 
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obtained which is similar on the form on an autoregressive model, but is not equivalent 
to them. In Section 4 a case of second order stochastic differential equations is 
considered in details and the problem of a parameter estimation of models is discussed. 
In Section 5 the time series for the US Treasury three-month’s Bills (January 2 1991 - 
January 5 1996) are analyzed as a numerical example.  

CORRELATION FUNCTIONS FOR YIELD DEVIATIONS FROM TREND 
FOR US TREASURY SECURITIES (JAN 1991 - JAN 1996)

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 25 50 75 100 125 150 175

LAG (DAYS)

3-MO
3-YR
30-YR

 
Figure 1. Correlation functions for yield deviations from trend for US Treasyry 
securities (Jan 1991 – Jan 1996). 
 

1. Stochastic differential equations of the arbitrary order 
 
The analysis of real financial serieses shows that stochastic models of dynamics of the 
interest rate processes in the form of the stochastic differential equations  
 

dy = a(y,t) dt + σ(y,t) dW(t)                                                 (1) 
 
for process with independent increments not always are relevant. Indeed solutions of 
such equations are the Markov processes. By the Doob theorem the stationary 
stochastic process is the Markov process (in the wide sense) if and only if its 
normalized correlation function is exponential. However the real financial data 
frequently are not such processes. We have verified that the correlation functions of 
real financial series are not exponential functions, that should take place for Markov 
processes. By the way whence it follows that the Markov processes have only positive 
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correlation. At the same time the correlation functions of real financial data can take 
negative values too and frequently are similar by the form to a damping cosinusoid. 
The stochastic processes with such properties can be obtained as a solution of the 
stochastic differential equations with higher order than first order.  

The equation (1) determines stochastic process which is continuous. However 
this process is nowhere differentiable with probability one. Let us consider the linear 
stochastic differential equation of the order n with continuous deterministic 
coefficients that determines stochastic process y(t), t ≥ s, which is continuous and has 
derivatives up to of the order (n − 1), inclusively, but has no derivative of the order n. 
Let us write this equation in stochastic differentials as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (tdWtdttytadttytatdy n
n

n σ=−−− −
−

−
0

1
1

1 ... ),  t ≥ s .    (2) 
 
So that continuous derivatives  у(k)(t)  for  0 ≤ k ≤ (n − 2) have stochastic differentials   
d у(k)(t) = у(k+1)(t)dt  and the derivative of the order (n − 1) has a stochastic differential 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (tdWtdttytadttytatdy n
n

n σ+++= −
−

−
0

1
1

1 ... ) ,  t ≥ s .    (3) 
 
Note that for σ (t) ≡ 0  the equation (2) becomes the homogeneous ordinary differential 
equation for deterministic function that have n derivatives.  
 

( ) ( ) 0... 01 =+++ yta
dt
dyta

dt
yd
n

n
                                                    (4) 

 
 
The general solution of the equation (4) can be presented as  
 

у(t) =  , t ≥ s ,                                                 (5) ( ) ( ) ( )∑
−

=

1

0
,

n

k

k
k systU

 
in terms of the initial conditions  у(s) = у(0)(s) , у(1)(s) , ... , у(n −1)(s)  and the particular 
solutions Uk(t,s) that correspond to a specific set of the initial conditions: у(k)(s) = 1,  
у(j)(s) = 0  for all  j ≠ k . Let us assume now that { у(k)(s) , 0 ≤ k < n}  are random 
variables. Then the function, defined by (5), will have continuous in mean square 
derivatives у(k)(t) up to the order (n − 1), inclusively. In this case this function is too a 
unique solution of the homogeneous stochastic equation (2) with the initial conditions  
{ у(k)(s) , 0 ≤ k < n}. 

The solution of the stochastic differential equation (2) with the zero initial 
conditions is set by the formula (Rozanov (1989)) 
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( ) ( ) ( ) ( )∫=
t

s

sdWsstUty σ,  ,            t ≥ s ,                                         (6) 

 
where for any fixed s the function U(t,s) of variable t, t ≥ s, is a solution of the 
homogeneous differential equation (4) with the initial conditions   
 

U(s,s) = 0 , U (1)(s,s) = 0 , ... , U (n − 2)(s,s) = 0 , U (n −1)(s,s) = 1 . 
 
Thus, if to take a solution  у(t) , t ≥ s, of equation (2) with the zero initial conditions     
{ у(k)(s) = 0 , 0 ≤ k < n}  and to add to it a solution (5) of homogeneous equation (2), 
then the sum obtained will give a solution of the equation (2) with the initial 
conditions { у(k)(s) , 0 ≤ k < n} . 

To analyze a solution obtained and to derive its in an explicit form, it is more 
convenient to write a described structure of solution of the equation (2) as follows. Let 
us introduce the designations: 
 

( ) 1

1

−

−

= k

k

k dt
ydty  ,    k = 1, 2, ... , п .                                                  (7) 

 
Then the equation (2) can be written in the equivalent form as a system of n 
differential equations of the first order that is written in differentials, that is 
 

( ) ( ) ( ) ( ) ( )tdWtdtytadtytadtytady

dtydy
dtydy

nnn σ++++=

=
=

−12110

32

21

...
...

             (8) 

 
The solution of this system of equations is convenient to present in the matrix form. 
For it we shall write the system (8) as 
 

( ) ( ) ( ) ( ) ( )

( )tdW

t

dt

y

y
y

tatatatady

dy
dy

nnn
⎟⎟
⎟
⎟
⎟
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⎜⎜
⎜
⎜
⎜

⎝

⎛
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⎟
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⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− σ
...
0
0

...
...

...............
0...100
0...010

...
2

1

1210

2

1

   (9) 

 
Introducing the vectors Y and σ and matrix A, it is convenient to rewrite this system 
more simply  
 

dY = A Y dt  + σ dW(t) .                                                              (10) 
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Y = ,  А = ,  σ  = .  (11) 
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The solution of this system in our case it is convenient to write in the integral form, 
which with taking account of the initial conditions  
 

{уk(s) =  у(k − 1)(s) , 1 ≤ k ≤ n}                                                        (12) 
 
at time  s  has a form 
 

Y(t)  = U(t,s)Y(s) +                                         (13) ( ) (∫
t

s

dWt τστ,U )

 
Here U(t,s)  is a fundamental matrix of solutions of a homogeneous system of the 
differential equations (Y' designates a derivative of a vector Y(t) with respect on 
variable t) 

Y' = AY(t).                                                                                   (14) 
 

It means that matrix  U(t,s)  satisfies to the equation 
 

( )
t

st
∂

∂ ,U = A(t)U(t,s)                                                                (15) 

 
with the initial condition U(s,s) = I  ,  I − unit matrix of an appropriate size.  
 
 

2. Equations with constant coefficients 
 
The basic problem under deriving a solution (13) in a concrete task is the 
determination of a matrix U(t,s). Let us consider the most simple case, when the 
coefficients in the equation (2) are constant, i.e. ai(t) = ai for all i. In practice 
frequently roots of a characteristic polynomial of the equation (2)  
 

λn + an-1λn-1 + ... + a1λ + a0 = 0                                                    (16) 
 
( or, that is the same, the eigenvalues of a matrix A) are distinct. In this case, matrix 
U(t,s) is found rather simply. At first, if the coefficients of the equation (2) are 
constant, then U(t,s) = U(t – s), i.e. the matrix depends not on absolute values of the 
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variables but on their difference, so it is function of one variable. Secondly, the matrix 
U(t,s) is explicitly expressed through roots of an equation (16) λ1 , λ2 , ... , λn  and also 
takes a form 
 

U(t–s) = ( ) 1−−Λ BBe st                                                                   (17) 
 
where   
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Λ

t

t

t

t
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e
e

e

λ

λ

λ

...00
............
0...0
0...0

2

1

,   .        (18) 

⎟⎟
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⎟
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⎛

=

−−− 11
2

1
1

21

...
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1...11

n
n

nn

nB

λλλ

λλλ

 
Thus if the coefficients of the equation (2) are constant (that ensures a stationarity to 
process y(t)) and the roots of a characteristic equation (16) are distinct the expression 
(13) together with (17) and (18) gives a solution of system (11)  in a form a vector Y.  
It should be noted that first component of vector Y is the solution of the equation (2) 
considered, i.e. process required. 
 

3. Difference version of the stochastic differential equations 
 
However expression (13) cannot be accepted as a model of real stochastic process, as 
only first component of a vector Y is observed and other components of this vector are 
nonobserved and in this sense the expression (13) is not realizable. To receive a 
realizable model of process that corresponds to the stochastic differential equation (2), 
it is necessary to be rid of these components of a vector Y. For it we shall construct a 
difference model, with which process satisfies. Let us assume, that the process  y(t) is 
observed only at times accepting discrete values: t ∈ {kh ,  k = 0, 1, 2, ...}. Let us write 
out with the help of expression (13) explicit expressions of values of process (first 
component of a vector Y  at times (m+k)h,  m = 1, 2, ..., n, according to an initial 
instant kh): 
 

ym+k ≡ Y1((m+k)h) =  

( ) ( ) ( ) ( ) ( )( )
( )

( )τστ dWhmkUkhYmhUkhYmhU
hmk

kh
n

n

j
jj ∫∑

+

=

−+++= 1
2

1111     (19) 

m = 1, 2, ... , n . 
 
The second summand in this expression is a combination of components that are 
derivatives. Namely these components are necessary excluded in order to receive a 
realizable model of process considered. For it the leading  n – 1 expressions (19) (for   
m = 1, 2, ..., n – 1) it is possible to consider as a system of equations with respect to 
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Yj(kh) ,  j = 2, ..., n, that should be excluded. Finding them from this system and 
substituting in expression (19) for  m = n  we shall receive a difference equation which 
can be considered as a model of process that is described by the stochastic differential 
equation (2). Such model determines values of process for sequential discrete instants 
in time intervals of duration h. This let us present it in the form (mathematical details 
are in Appendix).  

yk+n = ,                                               (20) (∑∑
==

−+ +
n

j
j

n

m
mnkm nkZya

11
, )

)

)

 
where according to Appendix factors  am are calculated by the formulae: 
 

an =  U11(nh) –  ,      a( )∑
−

=
+

1

1
111

n

j
j jhUV m = Vn+1–m,  m = 1, 2, ... , n – 1,       (21) 

 
and  {Zj(k) , j = 1, … , n}  are the mutually independent normally distributed random 
variables with zero expectation and variances determined by the following expressions 
 

Var[Zn(k)] =  ,                                               (22) ( )[ ] dssU
h

n∫
0

2
1

2σ

 

Var[Zj(k)] = ,  j < n.    (23) ( )( ) ( )( dsshjmUVshjnU
h n

jm
nmn

2

0

1

111
2 ∫ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−+−

−

=
+σ

 
And for any   l, 0 ≤  l  < n ,  
 

Cov(Zn–j (k) , Zn – j – l (k + l)) =  
 
 

=  ×                (24) ( ) ( )(∫ ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−−+

−

−=
+

h n

jnm
nmn shjnmUVsjhU

0

1

111
2σ

 

( )( ) ( )( ) dsshljnmUVshljU
n

ljnm
nmn

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−−++× ∑

−

−−=
+

1

111 . 

 
It follows from (20), that the solution of the stochastic equation (2), that is observed at 
discrete instants in equal intervals, is similar to the formula of an autoregressive 
moving average of order (n,n) (ARMA(n,n)). The general form of ARMA (n, n) is the 
expression 
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yk+n = + ,                                            (25) ∑
=

−+

n

m
mnkm ya

1
∑

−

=
−+

1

0

n

j
jnkjb ξ

 
where ξ k+1 , ... , ξ k + n  are independent mutually random variables with zero 
expectation and unit variance, and the moving average factors are determined with the 
help of formulae (22) and (23) in the form bj = (Var[Zn–j(k,n)])1/2. However in our case 
there is no full equivalence between  Zn–j(k,n)  and  bjξ k + n – j  as their correlation 
properties are different. In particular, for  0 ≤ l ≤ n –1,  0 ≤  j ≤ n – l – 1 
 

Cov(bjξ k + n – j , bj + lξ k  + l + n – ( j + l)) = bj bj + l =  
 

= (Var[Zn–j(k)] × Var[Zn – j – l (k + l)])1/2 ,                                       (26) 
 

that is differed from (25). 
The comparison (22), (23), (24), and (26) shows, that by a Cauchy-Schwartz 

inequality 
 

|Cov(Zn–j (k) , Zn – j – l (k + l))| ≤ |Cov(bjξ k + n – j , bj + sξ k  + l + n – ( j + l))| . 
 

As the correlation properties of moving average process essentially influence a 
variance of process y(t), the use of a usual model ARMA(n,n), that is defined (25), is 
problematic. It be should to use a relation (20) taking account of (21) - (24) when the 
difference version of the stochastic differential equation (2) is considered as a 
realizable mathematical model. 
 

4. A second order equation 
 
In a case, when n = 2, we have the most simple case. Let equation (2) has a form 
 

dу(1)(t) + 2а у(1)(t) dt + bу(t) dt = σ  dW(t) .                                   (27) 
 
The roots of a characteristic polynomial are found from the equation 
 

λ2 + 2aλ + b = 0 ,  baa −±−= 2
1,2λ  .                                     (28) 

 
The matrixes  B and  B –1 (see (17) and (18)) have the forms           
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21

11
λλ

B  ,   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=−

1
11

1

2

12

1

λ
λ

λλ
B  .                              (29) 
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Fundamental matrix of solutions U(t) is equal to 
 

U(t) = 
1

2 1λ λ− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

21

11
λλ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
t

t

e
e

2

1

0
0
λ

λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
1
1

1

2

λ
λ

 = 

 

= ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
+−−

− tttt

tttt

eeee
eeee

1221

2121

1212

12

12

1
λλλλ

λλλλ

λλλλ
λλ

λλ .                   (30) 

 
The equations (19) take the forms 
 

yk+2 = U11(2h)yk + U12(2h) ky ′  +  ( ) (∫ +−
h

khdWhU
2

0
12 2 ττσ )

yk+1 = U11(h)yk + U12(h) ky ′ + .              (31) ( ) (∫ +−
h

khdWhU
0

12 ττσ )

 
The system (A1) of Appendix is degenerated into the single equation to determine the 
derivative    from the second equation (31). Therefore in this case there is no 
necessity to use representation (A3). The expression (A2) is wrote out in the explicit 
form: 

ky ′

 

ky ′ = ( )hU12

1 ( yk+1 – U11(h)yk – ).          (32) ( ) (∫ +−
h

khdWhU
0

12 ττσ )

 
The solution in the form (20) is given by expression 
 

yk+2 = [U11(2h) − 
( )
( )hU

hU

12

12 2
U11(h)] yk  + 

( )
( )hU

hU

12

12 2
 yk+1 + Z1(k) + Z2(k) ,   (33) 

 
The stochastic component of expression (33) has a form 
 

Z1(k) = ( ) ( )
( ) ( ) (∫ +⎥

⎦

⎤
⎢
⎣

⎡
−−−

h

khdWhU
hU
hUhU

0
12

12

12
12

22 τττσ )

)

,            (34) 

 

Z2(k) =  .                                        (35) ( ) ( )(∫ ++−
h

hkdWhU
0

12 1ττσ
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The random variables  Z1(k)  and  Z2(k) are independent and have zero expectations. 
Their variances are computed by the formulae: 
 

Var[Z1(k)] = ( ) ( )
( ) ( )∫ ⎥

⎦

⎤
⎢
⎣

⎡
−−−

h

dhU
hU
hUhU

0

2

12
12

12
12

2 22 τττσ              (36) 

 

Var[Z2(k)] =  .                                              (37) ( )[ ]∫ −
h

dhU
0

2
12

2 ττσ

 
The correlation properties of such random variables are determined by a relation (for 
other distinguishing values of parameters a covariance is equal to zero) 
 

Cov[Z2(k,2), Z1(k+1,2)] = 
 

 = ( ) ( )
( ) ( ) ( )∫ −⎥

⎦

⎤
⎢
⎣

⎡
−−−

h

dhUhU
hU
hUhU

0
1212

12

12
12

2 22 ττττσ .                (38) 

 
It follows from (30) that the necessary elements of a fundamental matrix of solutions  
U(t)  are equal to 
 

U11(t) = ( )tt ee 21
12

12

1 λλ λλ
λλ

−
−

                                                (39) 

 

U12(t) = ( )tt ee 12

12

1 λλ

λλ
−

−
.                                                     (40) 

 
Therefore  

( )
( )

hh ee
hU
hU

12

12

12 2 λλ +=                                                                     (41) 

 

( ) ( )
( ) ( ) ( )hehU
hU
hUhU 21

11
12

12
11

22 λλ +−=−                                             (42) 

 

( ) ( )
( ) ( ) =−−− ττ hU
hU
hU

hU 12
12

12
12

2
2  

( ) ( ) ( ) ( τ
λλ

λλτλτλλλ −−=−
−

= +−−+
12

12

212121
1 Ueeee hh )                  (43) 
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Thus the relation (33) that specifies a difference model of an stochastic process, i.e. is 
determined by the stochastic differential equation (27), has a form 
 

yk+2 = a1yk+1 + a2yk + Z1(k) + Z2(k) ,                                             (44) 
 
where the coefficients  a1  and  a2  are determined  by  the formulae 
 

a1 = e eh hλ λ2 + 1 ,    a2  =  ( )− +e hλ λ1 2 ,                                       (45) 
 
and the random variables  Z1(k)  and  Z2(k) have the following probability properties  
 

γ = Var[Z1(k)] =  = ( ) ( )[ ]∫ −+
h

h dUe
0

2
12

22 21 ττσ λλ

 

= 
( )

( )
( ) ( )

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−+−
−

+

+

21
2
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22 211221

2 λλλλλλ
λλλλ

λλλλ
σ λλλλλλ hhhhh eeeee ,    (46) 

 

δ = Var[Z2(k)] =  = ( )[ ]∫
h

dU
0

2
12

2 ττσ

 

= 
( ) ( )

( ) ( ) ( )⎥
⎥
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⎢
⎢
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⎡

+
−

+−

−+−

212121
2

1221

2
21

2
21

2 1
2

1212

λλλλλλλλλλ
λλλλσ λλλλ hhhh eeee ,   (47) 

 

ε = Cov[Z2(k), Z1(k+1)] =  =  ( ) ( ) ( )∫ −− +
h

h dUUe
0

1212
2 21 τττσ λλ

 

=
( )

( ) ( ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−
− + hhh eehe 1221 22

12
2

12

2 12 λλλλ

λλλλ
σ ) .                         (48)     

 
Let us note that the process that is defined by equation (27), is causal if the 

eigenvalues  λ1 and λ2 are negative (or have negative real components, when they are 
complex conjugate). In order words if in the equation (27) a > 0. Using an technique of 
a research of time series (see e.g., Brockwell & Davis, 1987) in this case it is possible 
to represent time series (44) as 
 

yk+2 = ( ) ( ) ([ ]∑
∞

=

++ −+−−
− 0

21
1

1
1

2
12

1

j

jj jkZjkZee
ee

)  ,                    (49) 

 12



 
where for a brevity it is designated 
 

hee 1
1

λ=  ,     .                                                                 (50) hee 2
2

λ=
 
Then the relations (44) and (49) allow to receive the Yule-Walker equations for 
correlation function  r(k) of time series (44): 
 

r(0) – (e1 + e2)r(1) + e1e2r(2) = γ + δ  + (e1 + e2) ε                        (51) 
 

r(1) – (e1 + e2)r(0) + e1e2r(1) = ε                                                  (52) 
 

r(k + 2) – (e1 + e2)r(k + 1) + e1e2r(k) = 0 ,  k  ≥  0 .                       (53) 
 
The equation (53) is satisfied by the function 
 

r(k) =  ≡ .                                       (54) kk eCeC 2211 + hkhk eCeC 21
21

λλ +
 
The substitution (54) in (51) and (52) leads to a system of equations concerning factors  
C1 and C2, which are computed by the formulae 
 

( ) ( )
( )( )( )21

2
121

2
11

1 11
1

eeeee
eeC
−−−

+++
=

εδγ  

(55) 
( ) ( )

( )( )( )21
2
212

2
22

2 11
1

eeeee
eeC
−−−

+++
=

εδγ  . 

 
The formulae (50), (54) and (55) completely determine correlation function of process  
yk  that is defined by a relation (44). Let us note that the variance of this process is 
equal to r(0) = C1 + C2, that allows to find it as 
 

Var[yk] = 
( )( ) ( )

( )( )( )21
2
2

2
1

2121

111
21

eeee
eeee

−−−
++++ εδγ  .                                     (56) 

 
Let us consider a behaviour of correlation function (54) in case of the real roots. 

Let us assume for a determinancy that  λ1 <  λ2 . For steady processes these roots are 
negative, therefore from (50) we have that  e1 <  e2 < 1. From the formulae (55) it is 
seen that the factors C1 and C2  should have different signs, and in our case such, that 
C1 < 0 <  C2. However the sum C1 + C2  is positive, that follows from (56), therefore 
|C1| < |C2|. Besides, from above follows that  |λ1| > |λ2|. Thus in expression (54) 
negative term at time t = 0 are less than positive one and with increase t  it trends to 
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zero faster than the positive term. From this follows that for real roots of an equation 
(28) the correlation function of steady process is always positive and with increase of 
argument this function monotonically decreased to zero.  

Let us consider now a case of the complex roots. The eigenvalues λ1 and  λ2 are 
complex conjugate, i.e.  
 

λ1 = − α – iβ  ,  λ2 = − α + iβ  ,   α  >  0 .                                     (57) 
 
In this case formulae (45) will be transformed to a form 
 

a1 = = 2 ehh ee 12 λλ + − αhcosβh,  a2 = ( )he 21 λλ +− = –  e− 2αh.             (58) 
 
The factors C1 and C2, that are determined by the formulas (55), are complex conjugate 
too. In this connection we use notation 
 

C1 = u + iv  ,   C2 = u – iv .                                                           (59) 
 

Using (57) in formulae (55) gives the following expressions for  u   and  v 
 

( )( ) ( )
( )( )hhh

hh

ehee
heeu ααα

αα

β
εβδγ
422

2

2cos2112
cos21

−−−

−−

+−−
+++

=  , 

(60) 
( )( ) ( )

( )hhh

hh

ehehe
ehev ααα

αα

ββ
εδγβ

42

2

2cos21sin2
1cos

−−−

−−

+−
+++

=  . 

 
The expression for correlation function will be transformed to a  form 
 

r(k) = = 2 hkhk eCeC 21
21

λλ + ( )hkvhkue hk ββα sincos −− .             
 
This expression can be presented in some other form 
 

r(k) = ( ψβα ++ − hkevu hk cos2 22 ),                                   (61) 
 
where ψ  is determined from equality tg v uψ = . Let us note that the variance of 
process  yk  that is determined by a relation (49) in terms (59) is equal to Var[yk] =  2u. 
At last it is often more convenient to use normalized correlation function   
 

( ) ( )
( )

( )
ψ

ψβρ α

cos
cos

0
+

== − hke
r

krk hk  .                                 (62) 
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Thus if the real financial series has correlation function that take not only 
positive, but also negative values, and is similar to a damping cosinusoid then it is 
reasonable to accept a relation (49) as the mathematical model of such time series. In 
case of complex eigenvalues this relation is convenient to write out by using 
representations (58) 
 

yk+2 = 2 e− αhcosβh yk+1  –  e− 2αh yk + Z1(k) + Z2(k) .                       (63) 
 
Let us discuss now briefly problem of a parameters estimation of a model by real 
observations. Let {Yk,  k = 1, 2, ..., N} is available sample of values of considered 
financial time series. Let us transform it to sample of differences  {Yk+2 – a1Yk+1 – a2Yk,  
k = 1, 2, ..., N – 2} and also to make up of them a vector Y(a1, a2) with N − 2 
components. How it follows from a model (44), the values Yk+2 – a1Yk+1 – a2Yk are 
realizations of the normally distributed independent variables with zero expectations.  
Their variances and covariances are given by the formulae (46) - (48), so there is a 
sufficient information to make up a correlation matrix Σ  of vector Y: 
 

( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

+

=Σ

δγ

δγε
εδγε

εδγ

εδγ

...000
...............
0...0
0...
0...0

,, .                             (64) 

 
In these conditions for a parameter estimation of a model it is natural to use a method 
of a maximum likelihood. Let us recall that the parameters of a model a1, a2, γ, δ, ε  are 
determined by the formulae (45) − (48) through λ1, λ2 and σ. Thus we obtain a task: to 
minimize on variables λ1, λ2 and σ  an expression 
 

(N – 2) ln detΣ (γ, δ, ε) + YT(a1, a2) Σ  − 1(γ, δ, ε) Y(a1, a2),            (65) 
 

which depends on λ1, λ2 and σ  and is a part of logarithmic function of  likelihood. 
When the correlation function of real time series is monotonically decreasing 
nonnegative function, it is necessary to search λ1 and λ2 among real numbers. If the 
correlation function of real time series take not only positive, but also the negative 
values instead of the formulae (45) it is necessary  to use the formulae (58) and 
appropriate to the formulae (46) -  (48) expressions that define dependence γ, δ, ε  
through  α, β  and  σ  (these expressions here are not given because they are 
unwiedly), and to minimize (65) on variables α, β  and  σ. The deriving of estimations 
is a separate theme and here is not considered. Let us specify only, that instead of a 
solution the rather complicated problem of minimization (65) in practice for the 
determination of necessary parameters it is possible to use a simple empirical methods, 
one of which is described in the following section. 

 15



 
 

5. Numerical example of real time series 
 
In the capacity of illustration of explained above we shall consider the real time series 
that shows a change in time the yield rates of the US Treasury three-month’s Bills for 
a period since January 1991 till January 1996 (yield rate samples for 1435 business 
days). A general view of time series and its trend are shown at the Figure 2.  

YIELD RATES (%) for the US TREASURY  3-MONTH'S BILLS, 
2 JAN 1991 - 5 JAN 1996

y = 5,56039E-17x6 - 2,08368E-13x5 + 2,67646E-10x4 - 1,35438E-07x3 + 3,00904E-05x2 

- 0,010685772x + 6,562787576

2

3

4

5

6

7

0 250 500 750 1000 1250

BUSINESS DAYS

 
Figure 2. A general view of the yield rate process of the US Treasury three-month’s 
Bills and its trend as a polynomial of the sixth order. In the upper part of Figure the 
equation of a trend is given.  
 

The general view of deviations the yield rates from a trend is shown on the 
Figure 3, which allows to assume, that the process of deviations can be considered as 
stationary process. On the Figure 4 the normalized correlation function of process 
(REAL) of the yield rate deviations from a trend is represented for time interval from 
2.01.91 untill 14.06.93 (613 buisness days). As it is seen this correlation function 
cannot be approximated by an exponential curve, that implies impossibility to accept 
an autoregression of the first order and, hence, stochastic differential equation of a type 
(1) as a mathematical model of process. Let us consider a possibility to use for this 
purpose  
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DEVIATIONS PROCESS FROM TREND
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Figure 3. A general view of an stochastic process of deviations (%) from a trend for 
yield rate process of  Figure 2. 
 
the stochastic differential equation (27) that implies a difference model (44) (or (63)). 
For this purpose we will approximate a real normalized correlation function (NCF) by  
function (62). This function is set by three parameters: α , β  and  ψ. For their 
determination it is possible to use three following experimental data: a value of 
argument t1 , appropriate to first zero NCF; a value of argument t2 , appropriate to 
second zero NCF; a pair of values of argument and  NCF (tm,Cm), appropriate to the 
first minimum NCF. These three points on a curve NCF are easily identified. Using 
these data we can receive three relations for the definition of necessary parameters: 
 

ρ(t1) = 
( )

ψ
ψβα

cos
cos 11 +− te t  = 0 ,      β t1 + ψ = π/ 2 .         (66) 

 

ρ(t2) = 
( )

ψ
ψβα

cos
cos 22 +− te t  = 0 ,     β t2 + ψ = 3π/ 2 .       (67) 

 
ρ(tm) = m) = ( )

ψ
ψβα

cos
cos +− mt te m  .                                           (68) 
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Figure 4. Normalized correlation functions for process of deviations the yield rates 
from a trend for three cases: real data (REAL), approximation by a model (39) 
(MODEL) and approximation by an autoregressive model of the first order AR(1). 
 

Using these relations it is easy to obtain 
 

( )122 tt −
=

πβ  ,                                                                      (69) 

 
( )

( )12

12

2
2

tt
tt

−
−

= πψ  ,                                                                     (70) 

 
( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

ψρ
ψβα

cos
cosln1

m

m

m t
t

t
.                                            (71) 

 
In our case t1 = 49; t2  = 156; tm  = 97; Cm = – 0,4166. Using the formulas (69) − (71), 
we shall receive  α = − 0,0090; β = 0,0294; ψ = 0,1321. The normalized correlation 
function (62) for these parameters also is represented on the Figure 4 (MODEL). For a 
comparison on this Figure is represented too NCF for AR(1), which is obtained from 
real data, when they are approximated with the help of of method of least squares by 
an autoregressive model of the first order. 
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Conclusions 

 
The statistical analysis of financial data and time series of the interest rates in 
particular shows that these data can often not be considered as realizations of Markov 
processes. Therefore description of these data as process with independent increments 
generated by the stochastic differential equations of the first order is not always 
satisfactory.  

In this paper it is proposed in such cases to describe these processes of the 
interest rates by stochastic equations of the higher order, so that the derivative of some 
order would be a process with independent increments. The processes received have a 
more broad range of correlation properties and can more precisely describe actual data. 
A difference model similar to ARMA process but distinguished from it describes the 
sequence of observations of such process in discrete instants. For case of second order 
equations the analysis is conducted in the explicit form and the numerical example of 
the analysis of actual data of the yield rates of the US Treasury three-month's Bills is 
given. 
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Let us write the first  n – 1 equations (19) as 
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From here follows, that the components of a vector Y  which are necessary to exclude 
are determined as 
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It means that the values of derivatives of order from 1 up to (n – 1) of basic 

process at time  kh are expressed through values of this process at instants kh, (k + 1)h, 
..., (k + n – 1)h  and stochastic integrals on the appropriate intervals of time 
(kh,(k+1)h), (kh,(k+2)h), ..., (kh,(k+n–1)). Let us remark, that these intervals of an 
integration are put sequentially one into other, therefore components of a last vector in 
(A2) are dependent random variables. Let's introduce for a brevity a vector V 
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Using (A2) and (A3), it is possible to write out the last equation (19) for m = n in the 
following form 
 

yn+k ≡ Y1((n+k)h) = U11(nh)Y1(kh) + 
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The relation obtained is recurrent expression for the values of stochastic process, 

which follows the equation (2), at time  (k+n)h  through n previous values of this 
process at instants kh, (k+1)h, ... , (k+n–1)h  and some random components in a form 
of stochastic integrals that depend on a realization of Wiener process on a time interval 
(kh,(k+n)h). Such relation can be already considered as a realizable mathematical 
model of process, as it does not contain derivatives. The stochastic component of this 
relation can be presented in the form, more convenient for the analysis, as follows  
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Let us designate for  j = 1, 2, ... , n 
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( the sum in square brackets under an integral is equal to zero for  j = n; a variable of  
integration  s = (k + j)h – τ). Then the stochastic component of a relation (A4) is 
represented as a sum 
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Such representation has the advantage because from a structure of expression (A6) 
follows, that the terms of a sum (A7) are the mutually independent normally 
distributed random variables with zero expectations and variances that are determined 
by the expressions (A6).  

Thus the relation (A4) takes a rather simple form (20) where the coefficients  am, 
1 ≤ m ≤ n, are calculated by the formulae (21), the random components  Zj(k), 1 ≤ j ≤ n, 
have the structure (A6) and their variances and covariances are calculated by the 
formulae (22) – (24). 
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