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The problem of the likelihood function calculation is examined at parameter estimation 

of the stochastic process describing change of interest rates in the financial market.  Such 
problem arises, when it is supposed, that process is not usual diffusion process, but possesses 
continuous derivatives. In this case the increments of process become correlated, and for the 
likelihood function evaluation it is necessary to invert a matrix of the high order equal to 
sample size.  As is known the calculation of reciprocal matrixes of the high order either is im-
possible or results in essential mistakes of calculation.  In paper the way to avoid this diffi-
culty is offered. 

One of the most important parameters of the financial market is so-called the riskfree 
interest rate. Its changes in time are usually generated by stochastic process. More often as 
such process one chooses a diffusion process. However the diffusion process, which is pos-
sessing independent increments and not differentiated with probability unit, not always ade-
quately represents the real market changes of the interest rate. In this connection in 1 for 
modeling of the interest rate process r(t) it is offered to use the stochastic process having the 
first derivative r(t), which is a diffusion process: 

dr(t)  2a r(t) dt  b[r(t)   dt   dW(t).                            (1) 

 As the real interest rates are observed in discrete time the difference version of this 
equation is more convenient for practical application. This can be written down in the form  

rk2  (е1  е2) rk1  е1е2 rk  1(k)  2(k),                              (2) 

where rk  r(kh)  , h – an unit of discrete time;  – stationary mean of process; е1  
ехр1h, е2  ехр2h; 1, 2 – the roots of the characteristic equation 

 2  2a  b  0;                                                     (3) 

1(k) and 2(k) – the sequences of normally distributed mutually independent random 
variables with zero expectation and such, that var[1(k)]  2, var[2(k)]  2, but соv[1(k 
1), 2(k)]  2; k  0, 1, 2, … The sequence of random variables generated by model (2), is 
similar to known process ARMA (2,1), but differs from it that there is a correlation between 
1(k 1) and 2(k). Let's notice that the values 1, 2, , ,  are expressed in the analytical 
form (though also rather bulky) through parameters of initial model a and b of process r(t) 
2. We shall mention them here for convenience: 

    ,
1

2
2

)1)(1(

2

)1)(1(

)(

1

12

2
2

2
1

2

2
1

2
2

1

2
2

2
1

2
12































eeeeee
 

  .
)1)((

2

1

2

1

)(

1

12

2121

1

2
1

2
2

2
2

12
12































eeeee
e

e
e  

Let's consider a problem of parameter estimation of model (1) by sample of observa-
tions of interest rates r(kh), k  1, 0, 1, 2, …, n. For this purpose the relation (2) is more 
convenient to rewrite in the form 

yk2k2 where  yk2 rk2  (е1  е2) rk1  е1е2 rk,  k21(k)  2(k). 



  

The vector of random variables (2 3 … n) is normally distributed with zero expecta-
tion and a covariance matrix n  ij)  with elements 

ii    ;   ij  , if |i  j|  1;  ij  0, if |i  j|  1;   1  i, j  n.             (4) 

Therefore logarithmic function of likelihood will look like: 

n ln2  lndetn  Yn
Tn

1Yn/
2,                                     (5) 

where Yn
T  (y1, y2, …, yn). Minimization (5) on 2 gives an estimate 2̂   Yn

Tn
1Yn/n (up to 

parameters a and b).  

Substitution of the estimate 2̂  in logarithmic function of likelihood (5) results in a 
problem of minimization of expression 

(detn)
1/n(Yn

Tn
1Yn)                                                  (6) 

by parameters a and b.  
At great size of sample n direct calculation of expression (6) is inconvenient and implies 

enough large computing errors. 
The purpose of this paper in specifying the recurrent way of calculation (6) which is not 

resulting the large errors, peculiar to usual procedures of calculation of determinants of the 
high order and inverse matrixes of the high order. 

Let's enter designations: Dn  detn; Qn  Yn
Tn

1Yn; оn
T  (0 0 ... 0 ) – n-vector-row, о1 

 ; vn  on
Tn

1on; qn  Yn
Tn

1on; k1  (    ok
Tk

1ok)
1.  

The proposition 1. If a matrix n it is composed of the elements determined by formu-
lae (4) the recurrent relations take place 

Dk  (  )Dk1  2Dk2,   k  1,  D1    ,  D0  1; 

Qn  Qn1  n1(yn  qn1)
2,  Q1  y1

2/(  );                    (7) 

qk  k(yk  qk1),  k  1,  q1  1y1;   

k  Dk1/Dk;  k  (    vk1)
 1,  k  1,  1  (  ) 1; 

vk  2 (    vk1)
 1,  k  1,  v1  2 (  ) 1. 

Proof. Dп is known the Jacobi determinant. The recurrent formula of its calculation is 
known 3. For the proof of other recurrent formulae we shall take advantage of representation 
of a inverse matrix for matrix Ап set in the block form 4: 
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More convenient representation of blocks of this inverse matrix can be received, using 
the statement from 4: if square matrixes В, А, Р are nonsingular, a matrix, inverse to В  А  
ХРY, is representable as 

В–1  А–1  – А–1Х(Р–1  YА–1Х)–1YА–1. 

Therefore in the presentation (8)  
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For receiving of the recurrent form of the inversion of a matrix n  Ап it is convenient 

to take  Аnk  n1, ank  on1, akn  ,T
1no  Аk    . Then 
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where п  (    .) 1
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Further representing Yn in the block form T
nY   ( T

1nY   yn) gives 
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Applying the accepted designations for Qn and qn, we have 

Qn  Qn1  n1(yn  qn1)
2. 

Use of the block form for ,1n
T

nY  and T
ne  gives 

,1
1

1
T

1
1T





  nnnnnnnnn oYyoY  i. e. qп  п(yп  qп1). 

Now we shall take advantage of the block form for ,1n  to calculate .1T
nnn oo    Let's 

notice, that the first п  1 components of a vector  on are zero, and last is equal . Therefore 

nnn oo 1T    2(    ,) 1
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so vп  2 (    vп1)
 1,  v1  2 (  ) 1. Furthermore  vп  2 п. 

Let's notice, that the recurrent relation for Dn can be written down as 
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and these relations just also determine k, i.e. we have k  Dk1/Dk, or .
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finishes the proof of the proposition. 
 Using recurrent formulae (7) it is possible to construct computing procedure of loga-

rithmic function of likelihood (6) enough simply and conveniently. 
Let's consider a problem of convergence of the received recurrent relations. The basic 

recurrent procedure is a calculation of value vk as through it are expressed Dk and  k. For the 
analysis of convergence it is convenient to enter values k  vk/(  ) and   /(  ). Then 
for k the simple recurrent relation is received  

k  2/(1  k1),   0  0.                                               (9) 

Its properties depend on value only one parameter . Let's notice, that this parameter has the 
sense of a correlation coefficient and consequently on absolute value never exceeds units. 
Limiting value k at k   it is determined by the equation 

2    2  0, having two 
roots. The greater root is a unstable limit, therefore recurrent sequence k converges to a 
limit 

  .2)411( 2  

At   0,5, that is usually carried out in practice, monotonous convergence takes place 
k  , and k increases from zero up to . To characterize process of convergence in this 
case it is convenient by examining the ratio k/, which determines a degree of convergence 
for everyone k. In tab. 1 the values k/ are submitted for various   0,5. Apparently from 
this table for 9 iterations convergence on 90% for all   0,5 is guaranteed, and for   0,4 



  

convergence up to 99 %  is reached in all for 4 iterations. The slowest convergence is ob-
served for critical value   0,5. In this case convergence on 95 % is reached for 19 iterations, 
and on 99 % – for 94 iterations. 

Table 1 
Values of a parameter of convergence k/ (in percentage)  

for various  

k      

1 98,99% 95,83% 90,00% 80,00% 59,95% 50,03% 
2 99,99% 99,82% 98,90% 95,24% 78,89% 66,71% 
3 100,00% 99,99% 99,88% 98,82% 87,64% 75,05% 
4 100,00% 100,00% 99,99% 99,71% 92,37% 80,05% 
5 100,00% 100,00% 100,00% 99,93% 95,15% 83,39% 

 
The analysis of explicit expression for   / (  ) as functions of parameters a, b and 

h shows, that    (0, 1/4), and the maximal value   1/4 is accepted in a limiting case, when 
h  0, a  0, b  0. Then from tab. 1 follows, that in a problem examined by us the recur-
rent procedure (9) converges for 4 iterations. 

As it was noted earlier 5, the equation (1) can be considered as expanded the Vasiček 
model in the sense that model (1) and the Vasiček model will generate processes with the con-
stant (not dependent on r) volatility  and a variance 2/2k  var[r (t)]. In the literature there 
are results of parameter estimation of the Vasiček model for real financial processes 6–9. In 
tab. 2 these estimations and results of calculations on their basis of roots of the characteristic 
equations used above, and also values   , ,  are resulted. (Roots 1 and 2 of characteris-
tic equations (3) can be complex. It turns out for models from 8–9. In this case in the table 
real and imaginary parts of these roots are resulted with use of a designation 1    i, 2   
  i.) 

 
Table 2 

Numerical values of parameters of models 
described in papers 6–9 

Parameter 
CKLS 
(1992) 

Bali 
(1999) 

Aït-Sahalia 
(1996) 

Aït-Sahalia 
(1999) 

 0,0866 0,0642 0,0891 0,0717 

 0,020 0,0077 0,0467 0,0224 
а 0,5 0,5 0,5 0,5 
k 0,1779 0,0436 0,8584 0,2610 
h 1/12 1/12 1/365 1/12 

1 or   0,7685 0,9543 0,5 0,5 
2 or  0,2315 0,0457 0,7800 0,1049 

Lg() 3,3572 3,4496 7,8642 3,4497 
Lg() 4,3311 4,0517 8,4662 4,0518 
 0,1062 0,24992 0,2500 0,24996 

 

CKLS (1992): the annualized one-month U.S. Treasury bill yield from June 1964 to De-
cember 1989 (306 observations). Ait-Sahalia (1996): the 7-day Eurodollar deposit spot rate, 
daily from 1 Jun 1973 to 25 Feb 1995 (5505 observations). Bali (1999): annualized one-
month U.S. Treasury bill yield from June 1964 to December 1996 (390 observations). Ait-



  

Sahalia (1999): the Federal Reserve System funds data monthly from January 1963 to De-
cember 1998. 

As in real problems the recurrent procedure (9) practically converges for 4 iterations, in 
formulas for calculation of logarithmic function of likelihood it is possible to use limiting val-
ues of sizes Dk, k, qk and k that are calculated recurrently when the size of sample п is great 
enough. 
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Thus we receive an approximation logarithmic function of likelihood as 
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which is essentially easier, than the formula (6). However expression (10) yet is not com-
pletely ready for calculations. 

Let's notice, that by definition  rk  r(kh)  . It means, that 

yk2 rk2  (е1  е2) rk1  е1е2 rk  

 r((k  2)h)  (е1  е2) r((k  1)h)  е1е2 r(kh)  (1 е1)(1 е2). 

Thus in observable values are r(kh),  k  1, 0, 1, 2, …, n. It means, that expression (10) 
implicitly includes one more unknown parameter of model , which needs to be estimated. It 
directly is not connected to parameters of model a and b and consequently can be estimated 
irrespective of them, however this estimation will depend on a matrix n, i.e. finally, from es-
timations of parameters a and b. 

Let's receive an explicit dependence of expression (10) from  also we minimize it on 
this parameter. We shall present vector Yn as 

Yn  Rn  (1 е1)(1 е2)1n, 

where 1n – vector composed  of units, аnd Rn
Т  (Rn1, Rn2, …, Rnn) – vector not dependent on 

 with components Rnk  r(kh)  (е1  е2) r((k  1)h). Then it is possible to write down 
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Minimization of this expression on  gives estimate 
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This estimation is unbiased, ,]ˆ[ E  and its variance is  
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Submitting value ̂  in expression for Yn instead of , we receive new representation for 

Yn, already independent from unknown parameter. 
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where I – an unit matrix. 
Using representation (11) in expression (6), we receive expression for logarithmic func-

tion of likelihood through a vector Rn, determined in observable sizes r(kh), k  1, 0, 1, 2, …: 
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For simplification of calculation of this expression again we shall take advantage of re-
current procedures. 

The proposition 2. The following recurrent relations take place 
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The proof of these relations practically repeats proofs of similar relations of the propo-
sition 1 and consequently here is not resulted. 

Using the property of fast convergence of recurrent procedures for enough high n it is 
possible to find the approached values of the values determining a relation (12): 
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Now we use the received results in expression (12) for logarithmic function of likeli-
hood that gives the following approximate formula convenient for calculation of minimizing 
function 
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Let's remind that in the formula (14) components of vector Rn are determined by equality 

Rnk  r(kh)  (е1  е2) r((k  1)h), where r(kh), k  1, 0, 1, 2, …, are market observations of 
the interest rates. The formula (14) is represented more simple for calculations rather than ini-
tial expression (6) for logarithmic function of likelihood. 
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	Gennady Medvedev
	Therefore in the presentation (8)
	Further representing Yn in the block form� ( (�  yn) gives
	At ( ( 0,5, that is usually carried out in practice, monotonous convergence takes place (k ( ((, and (k increases from zero up to ((. To characterize process of convergence in this case it is convenient by examining the ratio (k/((, which determines a degree of convergence for everyone k. In tab. 1 the values (k/(( are submitted for various ( ( 0,5. Apparently from this table for 9 iterations convergence on 90% for all ( ( 0,5 is guaranteed, and for ( ( 0,4 convergence up to 99 %  is reached in all for 4 iterations. The slowest convergence is observed for critical value ( ( 0,5. In this case convergence on 95 % is reached for 19 iterations, and on 99 % – for 94 iterations.

	Parameter
	CKLS
	Bali
	(
	0,0866
	0,0642
	(
	0,020
	0,0077
	а
	0,5
	0,5
	k
	0,1779
	0,0436
	h
	1/12
	1/12
	(1 or (
	( 0,7685
	(0,9543
	(2 or (
	(0,2315
	(0,0457
	Lg(((((()
	(3,3572
	(3,4496
	Lg(()
	(4,3311
	(4,0517
	(
	Thus we receive an approximation logarithmic function of likelihood as
	Let's notice, that by definition  rk ( r(kh) ( (. It means, that
	yk(2(( rk(2 ( (е1 ( е2) rk(1 ( е1е2 rk (
	( r((k ( 2)h) ( (е1 ( е2) r((k ( 1)h) ( е1е2 r(kh) ( ((1( е1)(1( е2).
	Thus in observable values are r(kh),  k ( (1, 0, 1, 2, …, n. It means, that expression (10) implicitly includes one more unknown parameter of model (, which needs to be estimated. It directly is not connected to parameters of model a and b and consequently can be estimated irrespective of them, however this estimation will depend on a matrix (n, i.e. finally, from estimations of parameters a and b.
	Let's receive an explicit dependence of expression (10) from ( also we minimize it on this parameter. We shall present vector Yn as
	Yn ( Rn ( ((1( е1)(1( е2)1n,

	Minimization of this expression on ( gives estimate
	where I – an unit matrix.
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