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In this article some new product theorems for opened and closed queuing networks with
finite number of states have been proved. Each network is characterized by a graph with
states in its nodes and positive transition intensities in its edges. For different graphs and
systems of motion equations stationary product distributions of Markov processes, which
describe queuing networks with different prohibited transitions, have been obtained. Calcu-
lation algorithm of route matrices corresponding to modified systems of motion equations
has been constructed.
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1. FORMULATION OF PROBLEM AND MAIN RESULTS

In classical product theorems [1], [2] it is possible to recognize an analogy between
opened and closed queuning networks. Closed queuing network may be represented as an
opened network in which both arrivals to the network and departures from the network
are prohibited. These prohibitions do not prevent to represent stationary distributions of
customer numbers at different nodes in product form. Is it possible to widen a set of
such prohibitions with the product form of stationary distributions? This problem occurs
from modern applications for example retrial queues which are very important in modern
applications.

In this article some new product theorems for opened and closed queuing networks with
finite number of states have been proved. Each network is characterized by a graph with
states in its nodes and positive transition intensities in its edges. For different graphs and
systems of motion equations stationary product distributions of Markov processes, which
describe queuing networks with different prohibited transitions, have been obtained. Calcu-
lation algorithm of route matrices corresponding to modified systems of motion equations
has been constructed.

Consider an opened queuing network G with m nodes (one-server queuing systems),
input intensity A > O, serving intensities p; > 0,..., n, > 0 and route matrix @ = (0;;);

0o =0, 0<0, <1, (ki) #(0,0), Zek,:l, 0<ki<m.
=1
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Here 0y, is a probability of customer transition from i-th node to j-th node afier its serving
in i-th node (the O-th node is an external source or external space).

Denote ¢, = (1,0,...,0), e; =(0,1,0,...,0)...., e, = {0,...,0, 1) basic vectors in the
linear space E” and let Z™ = (N = (ny,...,ny), n 2 0,...,n, > 0}. Suppose that L(N, J),
J=0eoosjmh Jis J20 - Jm = O are transition intensities of discrete Markov process N(f)
with states in Z™ which describe numbers of customers in the nodes of opened Jackson
network with the route matrix ® and input intensity A. Positive transition intensities of
Markov process N(#) are the following

LON,N +e) = A0, NeZ", L(N,N-e) = b, N2 n. >0, (1)
LNN-e +e)=wbd, NeZ" m>0, 1<kzi<m. (2)

To describe the network G with prohibitions consider non-oriented graph I” with nodes from
states set £ C Z™ with edges represented in the form

[NNN+gl, NeZ" 1<k<m, (3)

[NNN-e.+e], NeZ", m>0 1<k#i<m. (4)

If (3) edge belongs to the graph I then there is an allowance for a customer transition from
k-th node to G-th node and from 0-th node to k-th node, 1 < k < m. If (4) edge belongs
to the graph I' then there is an allowance for customer served in i-th node to transit to
k-th node and vica versa. If some of (3), (4) edges does not belong to the graph I' then
appropriate transitions are prohibited in both sides.

If (3) (or (4)) edge is prohibited then a customer arrived in k-th node from i-th node
returns to i-th node and vica versa, 0 < k # { < m and so transition intensity (1) (or transition
intensity (2)) becomes equal to 0. Such allowances and prohibitions define a protocol in
the network G for example retrial queues protocol.

The network G with states set £ = Z™ and all possible (3), (4) edges (infinite queues in
network nodes) is an opened Jackson network. If the route matrix is indivisible:

Vi,je{0,1,..,m} 3 i, ip,...0,€{l,...m} :0, >0,0,>0,...0,,>0,
then the system of motion equations
Oty h) = O Ms e A8, &)

has a unique solution and &, > 0,...,A, 2 0. Here the matrix @ is obtained from the
matrix © by removal of the 0-th column. I &) < p,,..., A, < W, then the discrete Markov
process N(z), ¢ = 0 is ergodic {3] and its limit distribution [1] is calculated by

m " -1
P(N) = CO(N), O(N) = n(?ﬁ) , C= [Z @(N)] , Ne L (6)

=1 K. NeL
Theorem 1. Suppose that the route matrix © of the opened network satisfies a condition
0<Bp. 0 <l 1gksm (7}
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and a vector (hy, ..., M) is a solution of the system (5). Let Ly is finite subset of Z™ so that
the graph I consisting of edges {[NNN+¢], [IN+e,N+e]: Ne Ly 1<i#k<mjis
connected. Then the discrete Markov process N(1) is ergodic and its limit distribution P(N),
Nel=LoUN+e: Ne Ly, 1 <i<m)iscalculated by (6).

Following sets (Ne Z" : Y m <M}, INeZ": M <3 <M}, {NeZ™:
M <m<M, 1<k<m) 0<M MM.M,.. M, M,<ocosatisfy conditions of
this theorem.

Theorem 2. Suppose that the conditions (7) are true and L is finite subset of Z" and T
is connected graph with nodes which create a set £ and with (3), (4) edges. If elements of
the matrix © and numbers \ > 0,. .., Ay, > 0 satisfy equalities

}\.keko = )\-Bok’ 1<k<m, (8)

}u;-B,-k = }.;;Bkh 1<k+ism (9}

then the discrete Markov process N(1) is ergodic and its limit distribution PN), Ne Lis
calculated by (6).

Consider now closed Jackson network G’ with states set £ = (N € Z", 37, n; = M)}
and all (4) edges. Here M is the total number of customers in the set G'. The set G’ is
described by discrete Markov process N{(t), ¢ > 0 with states set .£ and transition intensities
(2). 1f route matrix &' = (EI;'d))k ) of the set G’ satisfies the condition

0<O,<1, Igskism (10)
then appropriate system of motion equations [2]
(}\‘la-o-s)“m)=(?\‘ls'°°9lm)®' (Il)

has infinite number of solutions Aq, ..., A, with nonnegative components. For any natural
M and for any solution of the system (11) with nonnegative components the formula (6) is
true.

Theorem 3. Suppose that route matrix &' of closed network satisfies the condition
(10} and a vector (M, .. ., hy) is a solution of the system (11) with nonnegative components.
Suppose that Ly is finite subset of Z™ so that the graph T consisting of edges {{N+e;, N+¢;] :
Nely, 1<i+#k<m}isconnected. Then discrete Markov process N(t) is ergodic and
its limit distribution PIN), Ne L = {N+e;: Ne Ly, 1 <i<m}iscalculated by (6).

Theorem 4. Suppose that L is finite subset of Z" and T is connected graph with
nodes which create a set .L and with (4) edges. If elements of the matrix ©' and numbers
Ay > 0,..., > O satisfy equalities

MO, =0, 1<ki<m (12)
then discrete Markov process N(t) is ergodic and its limit distribution PIN), N € L, is

calculated by (6).

222



2. PROOF OF MAIN RESULTS

Proof of the theorem 1. Denote
Fo(N}={N+e, 1<i<m]

F(N)y={N-e¢, N-e,+e, lsj<m, j#i, 1gi<m NeZ"
It is clear that
FON()F,MN) =o. (13)

As conditions of the theorem 1 are true so in the graph T for any N € £ there is a set of
indexes /(N) € {0, ..., m} so that a set of nodes S(N) connected with the node N by single
edges is represented as follows

SN = | FV. (14)
tef(N)
From (1), (2), (5) obtain
D, @MLIND - LI, NOWD] =0, 0<i<m Ne L. (15)

JeF(N)

From (15) obtain for N € £

2 [@MOLN D - LA Ne@} = 3 [OMNLN.Y) - LI NO®] =0 (16)
Je L Jes(N)

The graph I is connected and the conditions (7) and the equalities (16) are true and transition
intensities L(N, J) are bounded by A+, +.. .+, So the process N(z), describing an opened
queuing network with states set £ and the graph I satisfies well known ergodicity theorem
for Markov processes [3]. So it is ergodic and its limit distribution P(N) satisfies the
formula (6). The theorem 1 is proved.

Proof of the theorem 3. It repeats the proof of the theorem 1 practically word by
word. Small changes touche only the inclusion I(N) C {0,...,m} which is replaced by
the inclusion I(N) € {1,...,m}). And in (15) the inequality 0 < i < m is replaced by the
inequality 1 <i<m.

Proof of the theorem 2. The equalities (6), (8), (9) lead to

O(N)ABy, — D(N + ek)ukﬂm =0, NN N+egel, 15ksm, (17)

PN Oy ~DPN+e;, —e 0, =0, NNN+e—-e, €L, 1<ki<m. (18)

As the formulas (1), (2}, (17), (18) are true so the function ®O(N) satisfies the equations
(16). An end of the theorem 2 proof repeats the end of the theorem 1 proof. The theorem
2 1s proved.

Proof of the theorem 4. The equalities (6), (12) lead to the formulas (18) so the
function O(N) satisfies the equations (16). An end of the theorem 4 proof repeats the end
of the theorem 1 proof. The theorem 4 is proved.
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Remark 1. If in the conditions of the theorems 1 — 4 A; < p,..., Ay < |, then in these
theorems, the set may be infinite.

Remark 2. In the theorem 2 {the theorem 4) new results are obtained not by special
choice of the graph I (it is arbitrary here) but by a replacement of Jackson motion equations
(5) (Gordon-Newell motion equations(11)) by modified motion equations (8), (9) (modified
motion equations (12)).

Remark 3. It is clear from the proof that the theorem 1 is true for any connected
graph I satisfying the following condition. For any node N of the graph T there is a set of
indexes I(N) ¢ {0,...,m} so that S(N) may be represented in the form (14). It is easy to
prove that the conditions of the theorem 1 describe all graphs I’ which satisfy this condition,
Analogous statement is true for the theorem 3.

3. ALGORITHMS OF ROUTE MATRIX CONSTRUCTION
At first consider the opened network. Supposethat A > 0, 85, > 0, 1> 0,9> 0, 1 <k <

m are fixed. Using the formulas (8) it is possible to define A,..., A, and 8, 1 € ki< m
which are solutions of the following problem.
Denote
Ay = M(1 = Oyp), (19)
then from (8)
Ap= ol =80) b, (20)
Os0
Let
i = O /(1 — Oi), (21)
S0 ”
D=1, 1gk<m. 22)
i=1
Denote
Ck; = AkJ'IIk,f, 1% k,i < m. (23)

As the formulas (9), (22) are true so the matrix C = (Cy)f,, is 8 permissible solution of
the transportation problem

chi=Aks Ci=Cu>0, 12ki<m. (24)
pa

So using fixed numbers A > 0, g, > 0, 1 > 045 > 0, 1 < k < m find by the formulas (19)
Ay, 1 £k £ m. Then using A;, 1 £ k < m define a permissible solution of the transportation
problem (24) and from the formulas (21), (23) find 5y, 0y, 1<k, i <m.

Consider now a search of permissible solutions of the transportation problem (24).
Renumber nodes 1,...,m so that A} £ A,,..., Ay £ A,. Choose Cyy,...,C,, from the
conditions

m
ZC”‘ =Ap, Cy>0,....Cim>0
k=1
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and let
Cu=Cy, k=1,.

Redefine now A,,..., A, by the following formulas:
Az = Ay —Cgl,.. .,Am = Am— le.

Now it is necessary to define Cy, 2 < k,i <m from

chi=Aks Cu=Ca>0, 22k i<sm (25)
i=2

Apply the same procedure but to the problem (25) and so on. Resulting algorithm is a
modification of well known North-West Angle algorithm [4] of transportation problem (24)
solution. The only difference is in additional condition that the matrix C is symmetric.
The case of the closed network may be considered analogously.
The paper is supported by RFBR, project 03-01-00512.
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