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A single-server queueing system with a batch Markovian arrival process (BMAP) and
MMAP-input of disasters and two operation modes is considered. Arrival of disaster causes
all customers to leave the system instantancously. The embedded and arbitrary time station-
ary queue length distributions and performance characteristics are obtained.
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1. INTRODUCTION

The queueing systems with negative arrivals describe quite adequately the operation
of communication networks with loss of information units. For such systems dynamical
control of customers arriving can be mean of reduction the expense of information loss
without influence on the reason of loss. The queues with controflable mode of operation
receive a significant attention in literature {4, 5].

The loss of the information units can be described by a negative arrival which removes
a customer from the system or a disaster arrival as a special case of a negative arrival which
causes all the customers to leave the system. The theory of negative arrivals has been
originated and developed by Gelenbe [6]. The detailed survey of the queues and networks
with negative arrivals and disasters is given in [1, 3].

2. MODEL

Let us consider a single-server queue with unlimited waiting space having two modes
of operation and additional input of disasters.

The r-th mode of operation is described as follows. The input into the system is a
BMAP (Batch Markovian Arrival Process). This input is controlled by a stochastic process
vi,t = 0 with the state space of v, is {0, 1,..., W}. The transitions of process v,,¢ > 0
and arrivals of customers in the r-th operation mode are performed according to a matrix
generating function DV(z) = iy Dg)zk, l2l € 1, r = 1,2. More detail description of the
BMAP can be found in [8].

We assume that service process is of SM-type. It means that successful service times
are the sojourn times of a semi-Markovian process m,,z > 0. This process has a state space
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{1, ..., M} and a semi-Markovian kemel B"{(x) = (Bf;?m, (x))m o TH when the system operates

in the 7-th mode, r = 1,2. The function Bf;?m,(x) is the conditional distribution function of
the sojourn time of the process m,, ¢ > 0 in a state m under the condition that the next state

ism', m,m’ = 1, M. We use the same assumptions about the kernel B“(x) as in [9].

The system under consideration has an additional input of of K types of disasters, R > 1.
The arrival of disaster of type & to the busy system interrupts the service and immediately
removes all customers from the system. Then the server is recovered during a period
having distribution function G,(f), k = 1,R. If disaster arrives to the empty system or
during a recovery period it’s ignored by the system. We consider two cases of customers
admission during a recovery period:

a) the customers arriving during a recovery period are accumulated,
b) the customers arriving during a recovery period are lost.

The input of disasters is MMAP (Marked Markovian Arrival Process) [7]. This input
is directed by a stochastic process m,,t > 0 having a state space {0, 1,...,N}. When the
system operates in the r-th mode, the transitions of the process 7,,¢ = (0 are governed by
the matrix generating function F(z) = 3, F;”z“,lzl < 1. Transitions of the process 1,
without generating of disaster are¢ governed by the matrix F g). Transitions of the chain n,,
which cause the appearance of disaster of type K, are governed by the matrix F "N k=1,R,

r=1,2,

The quality of the system operation is evaluated by the following cost criterion:

C=aAL+ YV 4+, Y® 1 4V, )

where L is the average queue length at service completion epoch; A~ is the average
time between service completion epochs; Y7 is the average fraction of time, when the r-th
mode is used, » = 1,2; V is the average number of customers lost per time unit; a, ¢y, ¢;
and d are the corresponding cost coefficients. We assume thata > 0, 0 <cy €62, d2 0.

The operation mode can be changed at a service completion epoch correspondingly
to the threshold strategy. Threshold strategy is determined as follows. An integer-valued
threshold j is fixed, j > Q. If a queue length at a given service completion epoch does not
exceed j, the first mode is selected for the next customer service. Otherwise, the second
mode will be used.

In this paper we present the algorithm for calculation of the cost criterion value under
the fixed threshold. Having available this algorithm we can find the optimal threshold
strategy that minimizes the cost criterion value in some finite set of the threshold values.
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3. EMBEDDED MARKOV CHAIN

Let ¢, be the n-th epoch of customer departures from the system. It’s a service comple-
tion epoch or a disaster arrival epoch at a busy period.
Consider the five-dimensional Markov chain E, = {i,, 4., V,, N, Ma}, 7 = 1, where

e u, =0, if t, is an epoch of successful service completion epoch, in this case i, is the
number of customers in the system at an epoch f, + 0, i, 2 0;
o u, =k, if t, is an epoch of arrival of disaster of the type k, in this case i, is the number
of customers which leave the system at an epoch ¢, k = 1,R i, > 1,
v, 1s the state of arrival directing process v, at the epoch ¢,, v, = 0,1; 1, is the state of
disasters directing process 1, at the epoch ¢, + 0,n, = O, N and m, is the state of service
directing process m, at the epoch ¢, + 0, m, = 1, M.
Introduce into consideration the stationary state probabilities

pli,vynm)=lim Pli, =i, u, =0, v,=v,n, =nm,=m}, i 20,
k(')(i,'v,'l],m) = llm P{ln = i, Wy =V, = V,T]n = Tlsmn = m}?‘ = 1}
V,'V, =09W$T]9‘q’ =‘69_~ﬁ3m9m' = ]!M1r= l’R‘

Corresponding to the lexicographic order, introduce the vectors p(i, v, ) = {p(i,v,n, 1), -,
p(la v, 1, M))s f-c’{’)(f, v, n) = (k(r)(i' ¥, 1, 1)': T k(r)(f’ v, 1M, M)), ﬁ(‘.’ ’V) = (ﬁ(is' v, 0)! Tty
AN, KOGV = (ROGv,0),-- KOGV N), B = (B0, BEW), K =
= (B, 0), - - -, ki, W)) and generating functions

f o o
P=) 77 P=) pd. RP@=) k7, r=TR k<l

=0 =t i=1

Theorem. The vector generating functions 131(2), ﬁz(z) and I?(")(z) satisfy the following
matrix functional equations:

&
Pi(2)( — Bi(2)) + Po(2)(d — Bal2)) = Ro(W(2) = NP1 (D) + Z EOMHO)Bi(2),
r=1

R
ROG) =|7o(¥@) - D+ Fi@ + ) f(“’(l)H‘“’(z)]S({}(z) +B@sY@, r=1TR
u=1

where ®y = o + T | KOHHD, B(2) = ): Q7 = f P @ o @ dBO), r = 1,2,

W(2) = é ¥, = —[(DV ® FOW) ' (DV@) - DY) @ Inat)] @ I,

SWRy= ) §WF = f PP (U FD) @ (B (+00) — BO()dt, r =T, 2,u = 1R,
0

k=0
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H(g) = Z H ¢ = fm P @ oFGG (1 © Iy
k=0 0

— if the customers are accumulated during a recovery period,

H{!‘)(Z) -~ Z Hj(:i") k = H(()r} - \fweDU}(l].r®eF‘(?J(])fdGr(r)®IM
0

k=0

— if the customers are lost during a recovery period. Here ® and ® are the symbols of the
Kronecker product and Kronecker sum, 1, denotes an identity matrix of the size n.
Corollary. The generating ﬁmcnon ﬁl(z) is determined by the equation P'l (z) = Y (2)+
SR RO(1)0.(2), where Y(7) = Lo hT, 09 = T, er}z‘, r = 1,R, and matrices Y,
and Q,, i = 0, ] are calculated from the recurrent jormulas Yo=LY = (Q{(}”)‘1 -¥

4]
0" = —HO@P)Y! - HY, Y., =(y, - E w00, - ): Y, Q(BM) @M, oY = -HY,

R (e E(Q,E"’+H‘”)Qf'l+.)(n§)”)' ~H? i=17<1r=TR

!+] i+
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