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1. INTRODUCTION

In modeling modern communication networks, it is typical that the problem of perfor-
mance evaluation and capacity planning can be solved only by means of analysis of multi-
dimensional stochastic processes. So, essential attention of many researchers is paid to
discovering and investigating classes of multi-dimensional processes where it is possible to
get constructive results refating to stability conditions establishment and ergodic distribution
calculation. A seminal role in these developments is played by M. Neuts, see, e.g., his books
[6, 7). He introduced into considerations and studied so called Quasi-Birth-and Death
Processes, M/G/Y and G/M/1 type Markov chains. Among other researchers who were
successful in development of investigation of the classes of multi-dimensional processes we
can mention names by G. Basharin, P. Bocharov, V. Naumov, W. Ramaswami, D. Lucantoni,
S. Chakravarthy, G. Latouche, W. Grassmann, D. Heyman, R. Gail, B. Taylor, S. Hantler
and others. The achieved results allow to implement exhaustive analysis of a wide range of
stochastic models, queueing systems in particular.

However, most part of results is related to the space homogencous processes. More
complicated case when the processes are inhomogeneous in space is investigated in far less
extent. We can mention, e.g. the paper by Bright and Taylor [3] where the so called Leve!
Dependent Quasi-Birth-and Death Processes (LDOBD) are investigated. In that paper, the
algorithm for calculation of the steady state distribution for LDQBD processes is presented.
Note, that the authors by [3] do not impose any assumptions about the existence of limits
for parameters of LDQBD. So, they do not try to investigate conditions for the stationary
distrtbution existence and assume in advance that the process is ergodic. The second short-
age of this paper is consideration of only three-block diagonal generator. Thus, authors
by [3] solved, in some extent, the problem of expanding M. Neuts’ results relating to the
Quasi-Birth-and Death processes to the level dependent case.
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The work to extend the results by M. Neuts relating to the M/G/1 type Markov chains
to the level dependent case was done by the authors of a present paper in [2, 4, 5]. Notion
of asymptotically quasi-toeplitz Markov chain (AQTMC) is introduced and constructive sta-
bility conditions are proved there. Algorithm for calculating the steady state distribution
is presented. Motivation of such a generalization is quite clear. Retrial queueing models
describe many important processes in applications, in telecommunications in particular, The
BMAP{G/1 retrial queueing model and many its generalizations were successfully investi-
gated since year 2000 by means of the AQTMC while no other approaches for investigation
of such queueing models are offered in literature yet.

Unfortunately, till now results are obtained only for discrete-time Markov chains. But
many multiserver queues (see, e.g., paper [2] where the BMAP/PH/N retrial queue is under
study) are described by continuous-time Markov chains. So, its investigation by means of
AQTMC requires the intermediate reduction of the original continuous-time Markov chain
to auxiliary discrete-time Markov chain. This reduction is just technical and it is desirable
to avoid it. The present paper has a goal to cancel necessity of reduction to the discrete-time
Markov chain in analysis of continuous-time Markov chains. Presented results constitute
the background for direct investigation of a level dependent continuous-time Markov chain.

The paper is organized as follows. Section 2 contains the formal definition of multi-
dimensional continuous-time asymptotically quasi-toeplitz Markov chain. In section 3, the
jump chain for the continuous-time Markov chain is built up and it is shown that the jump
chain belongs to the class of multi-dimensional discrete-time asymptotically quasi-toeplitz
Markov chain previously studied in [2, 4, 5]. Based on this conclusion, stability condition is
presented in section 4 and in section 5 an algorithm for calculating the stationary distribution
is given in terms of generator of the multi-dimensional continucus-ttme asymptotically
quasi-toeplitz Markov chain. Section 6 concludes the paper.

2. DEFINITION OF MULTI-DIMENSIONAL
CONTINUOUS-TIME ASYMPTOTICALLY QUASI-TOEPLITZ
MARKOV CHAIN

Let & = {i,, x}, ¢ 2 0 be a regular trreducible continnous-time Markov chain. We assume
that the process i, takes values in denumerable set. Without loss of generality, we suppose
that 4, € {0, 1,...}. When the state of the process i,,# = 0 15 equal to i,i > 0, the process
X, > 0 takes values in finite set X; of finite-dimensional vectors. Note that the vectors
belonging to the set X; can have different dimensionallities. We also assume that there are
the nonnegative integer i* and the set X of finite-dimensional vectors such that X, = X when
i > i*. Thus, the phase space S of the Markov chain &,, ¢ > O has the following form:

S ={(,x)xeX,i=0,1,..,5%Gx),xeXi>})

In what follows we denote the number of vectors in the set X, as K, K; > 0,i =
0,1,...,1, and the number of vectors in the set X as K, K > 0.
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Enumerate the states of the chain E,, ¢ > 0 as follows. Put the states (i, x) in ascending
order of the component { and then, for fixed {, arrange the states (i, x), x € X, in any suitable
manner (as a rule, the lexicographic order is efficient), i = 0.

Write the generator A of the chain in the block form A = (A;);; 2 0, where A;; is the
K; x K; matrix formed by intensities a; xu,) of the chain &, ¢ > O transition from the state
(i, x), x € X;, to the state (/,z),z € X;. The diagonal entries of the matrix A;; are defined as

Qi == 2 QG- Note that the matrix A, is a K-size square matrix for i,[ > i,
ze;L'J;X.'\[X]
Introduce the notation R; for the diagonal matrix having the values —ag . a5 its
diagonal entries, i > 0.
Definition 1. Regular irreducible continuous-time Markov chain E,,t > 0 is called
asymptotically quasi-toeplitz Markov chain if
10. A,-_g=0forl<i«—1,i>0.
20, There is a matrix R such that
lim R'=R. (1)
3. There are integers ip, ko = 0 such that the matrices A;;.x do not depend on i when
i> ik 2k
45, There exist the limits

lim Ri'Ajink=-1,0,.. ko — 1. (2)

5% Jump chain (see [1]) €,,n = 1 of the process &,,t = 0 is non-periodic.
Investigation of the Markov chain &, ¢ > 0 is based on the analysis of its jump chain.

3. JUMP CHAIN

The jump chain &, = {i,, x,},n = 1 for the process §;,¢ > 0 has state space S and the
transition probability matrices Py, i,1 > 0 defined as follows

0, 1<i-1,i>0;
Py=3 R1Ay; lzmax{0,i-1}1+i (3)
R;lA,",'-l'I, I=iiz0.

The following statement holds true,

Lemma L. Markov chain E,,n > 1 belongs to class of asymptotically quasi-toeplitz
discrete-time Markov chains.

Proof. Show that the §,,n > 1 satisfies to definition of asymptotically quasi-toeplitz
discrete-time Markov chains given in [5].

The chain &,,n > 1 is irreducible (since the chain E,t > 0 is irreducible) and non-
periodic (by point 5° of definition 1).

Then, we should verify that conditions (i), (i) and (iii) of definition 1 in [5] are satisfied.

Condition (7) holds good because P;; =0, I <i—1,i> 0 by (3).

;!
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Let us show that the series Z P;ie-1 converges uniformly in the region { > max(i"+1, iy}

what guarantees the fulﬁllment of condition (ii).
This series is represented in the following form:

ZPHHC—] —'ZPH+k—I +R- Z Au+k-

h=kg+1

The uniform convergence of the series stems from the independence of 3, A;j4-y of §
k=kg+1
for large values of i and the uniform boundedness of the matrices R;!. The first fact ensues
from point 3% of definition 1 while the second one ensues from point 2° of definition 1.

To check condition (iif), consider the following limits:

Y, = im Py = im Ry A, k= 0,2,3,.. ., 4)
Y, = Ilm P = limR;]A,-',- + 1.

For k < ky, limits (4) exist according to point 4% of definition 1. For k > kg, the existence
of limits (4) follows from points 2¢ and 3° of definition 1.

The matrices Yy, £ > 0 are substochastic sinice they are the limits of the sequences of the
substochastic matrices.

Equations (4) and the uniform convergence of the series }, P; -1 imply the relations
k=0

dEf lll'l'l Z P; -1 & Z lim P, k-1 = Z Yk (5)

Because all elements of the sequence 3, P -1, [ 2 O are stochastic matrices, its limit
=0

Y is stochastic one as well. According to (5), the matrix } ¥} is also stochastic.
k=0

So, the matrices ¥,k > O defined by (4) exist, they are substochastic while their sum is
the stochastic matrix. It means that condition (ii7) is satisfied.

Thus, we have proven that the Markov chain &,,n > 1 satisfies to definition 1 in [5]
and, consequently, it is the asymptotically quasi-toeplitz Markov chain. a

4. ERGODICITY CONDITION

Further investigation of the chain &,,¢ > 0 is based on the results for multi-dimensional
asymptotically quasi-toeplitz discrete-time Markov chain given in [5].

Introduce the notation Y(z) = 3, Y¥,2%, |z] < 1 for the generating function of the matrices
=0

k=
Yok = 1 defined by (4). The following two theorems give the stability conditions for the
Markov chain &;,¢z > 0 in terms of generating function Y(z). We distinguish the cases of
irreducible and reducible matrix ¥Y(1).
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Theorem 1. Let Y(1) be an irreducible matrix and Y'(1) < co. Suppose that the series

E kA;;1x-1€ converges for i = 0, i and the series Y, kA; k-1 converges for any i > i*. Then
k=1 k=1
the sufficient condition for the Markov chain &, t > O ergodicity is the fulfillment of the

Jollowing inequality:
[det(zl = Y(2))) .-y > 0. (6)

Proof. First, show that inequality (6) is the sufficient condition for ergodicity of the
jump chain E,,n > 1 conditionally the hypothesis of theorem 1 hold.

To do this, we use theorem ! in [5]. According to that theorem we must only prove
that the series Y, kP;;.«—1e converges for i = 0, i, and the series > kP converges

k=1 k=1
for all i > i* and converges uniformly for large values of i, Convergence of the series

> kP, 1€ follows directly from conditions of the theorem under proof. The second series
k=1

is represented in the following form:

0o y =]
kai,:‘-u-k—l = kaf,i+k—! +R;! Z kA jik-1. 6
= k=1

d=kg+1

The converges of series (7) for i > i* follows from the convergence of the series }, kA;
k=1

for i > i*. The uniform convergence of (7) stems from the independence of 3, kA; ;. of
=k +1

i and the uniform boundedness of the matrices R;! for large value of i. These facts ensue
from points 2°, 3% of definition 1.

Thus, we have shown that the fuifillment of inequality (6) is the sufficient condition for
the jump chain &,, n > 1 ergodicity.

Represent the stationary (ergodic) distribution of the chain E,,» > 1 in the partitioned
form (ng, 7y, ...) where the row vector =; is the vector of steady state probabilities of the
chain E,,n > ] corresponding to the state i, = i of the denumerable component. It is
easy verified that row vector (pg, py,...), where p, = cmR;', i = 0, ¢ is some constant,
satisfies the system of balance equations for the stationary (ergodic) distribution of the
process E;,¢ > 0. Since the E,, 7 > 0 is regular irreducible Markov chain then, according to
the Foster theorem [1], the sufficient condition for its ergodicity is distinction of zero of the
constant ¢ which has form

c= (Z J'I:;R:'e)_l. B (8)
i=0

Taking into account the uniform boundedness of the matrices R;? for large values of i we
see that the series in the right part of {(8) converges to some positive value. So, 0 < ¢ < oo,
and row vector (p,, p,,...) is the stationary distribution of the chain &,7 > 0. O

Corollary 1. Inequality (6) is equivalent to the following inequality: i
CRRR I

y(De<1, . .. g
&0
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where the vector y is the unique solution to the system of linear algebraic equations

y¥()=y, ye=1

Consider now the case of reducible matrix Y{(1).

Theorem 2. Let Y(1) be reducible matrix having the matrices YO(1),1 = 1,m as
irreducible stochastic blocks of its normal form, YO(2),1 = 1, m are the generating functions
corresponding to these blocks and Y'(1) < oo.

If the senesz kA, +x-1€ converges for i = 0,* and the series E kA, .11 converges for

any { > i* then the sufficient condition for the Markov chain E,, > O ergodicity is the
fulfillment of the inequalities

[det(zl - Y(2)) .., > 0, I=1,m. 9)

The proof is implemented by analogy with the proof of theorem 1. But we use theorem 2
instead of theorem ! from [5] in the proof of jump chain ergodicity condition, O
Corollary 2. Inequations (9) are equivalent to the following inequations

dy? _
yi_;jz(_Z)‘Fle <1, I=1m, (10)

where y, is the unique solution to the system of linear algebraic equations

»¥O) =¥
yfe= ]., l= l,m.

To check the ergodicity condition in case of reducible matrix Y (1) we have to reduce this
matrix to its normal form. This reduction is associated with some technical difficulties.
At the same time, asymptotically quasi-toeplitz continuous-time Markov chains, describing
many queueing process, have the reducible matrix Y(1) of specific form what allows to
involve only a part of the matrix ¥{1) in checking the ergodicity condition. As a rule, this
part turns out to be a diagonal block of ¥Y(1) of much smaller size comparing to the size of
¥(1). So, the following lemma and theorem can be useful.

Lemma 2. Let Y(1) be a reducible K x K matrix, which can be represented in the form

A Yu) 1)
Y(““( 0 Yzz(l))

where Y11(1) and Y5, (1) are the square matrices of sizes Ly and L, respectively, 0 < Ly <
K-1, L + I, = K. Suppose that all diagonal and under-diagonal entries of the matrix
YD) are equal to zero.

Let also Yég(l),l = I, m be irreducible stochastic blocks of normal form Yg’(l) of the
matrix Y»(1).

Then, these blocks are also irreducible stochastic blocks of normal form Y\N(1) of the
matrix Y(1) and YWN(1) has no another stochastic blocks.
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Proof. By means of coordinated permutations of rows and columns of the matrix Y(1)
we can reduce this mairix to the form

. Y(1) O )
p={ 2 7
( Yio, Yu

where ail diagonal and off-diagonal entries of the matrix ¥y, are equal to zero.
Next, reduce the block Y5;(1) to its normal form Yg’(l) by means of coordinated per-
mutations of the matrix ¥ rows and columns. As the result we get the normal form YVi(1)

of the matrix Y(1)
YNy 0
Y™ =( 2yl )
M Yo Yu

It is easy to see that all irreducible stochastic diagonal blocks of the matrix Y™(1) are
contained m the matrix Yg; I(1) since the diagonal irreducible blocks of the matrix $,, are
substochastic matrices of 1 x 1 sizg, i.e., each of these blocks is the scalar which is equal to
zero.O

Theorem 3. Let Y(1) be a reducible matrix satisfying the conditions of lemma 2,
Yg(l), | = 1,m are the irreducible stochastic bilocks of the normal form I’g 1) of the
matrix Y(1).

Then the sufficient condition for the Markov chain E,t > 0 ergodicity is the fulfillment
of the inequalities

[det(zl - Y)Y _, >0, [=1,m. (11)

The proof of the theorem follows from lemma 2 and theorem 2. m|

5. ALGORITHM FOR CALCULATING THE STATIONARY
DISTRIBUTION

The algorithm will be derived by means the minor modification of the algorithm for
calculating the stationary distribution of asymptotically gquasi-toeplitz discrete-time Markov
chain given in [5]. We will use comrespondence (3) between the chain &,,7 > 0 trangition
rates and the chain E,, n > 1 transition probabilities as well as the following correspondence
between the stationary distributions of these chains:

m=c ' pR, >0, (12)

where the value ¢ is defined by (8).

Putting expressions (3), (12) for P,;, I 2 max{0,i - 1},i > 0 and =,,i > O respectively to
formulae (9)—(13) in [5] and using formula (16} in [5] we get the following algorithm for
calculating the vectors p,, i > 0.

o Calculate the matrix G as the minimal nonnegative solution to the matrix equation

e GziYkG’t.
* k=0

A

32



o Calculate the matrices G;,i = 0,1,...,7 — 1, by using the backward recursion

Gi=(= ) Ai1aGaiGaz .. Gic) MAprs, i =0,1,...,T- 1 (13)
n=i+]
with the boundary condition G, = G, i > i. Here i is some threshold such that { > i*.
Its value depends on the convergence rate of the matrices P; ;.1 to the corresponding
matrices Yy, k = 0 and the required accuracy of calculations,
o Calculate the matrices A;;, [ > i,i = 0 by the formulae

14-;"[ = A+ Z Ag‘nG,t_|Gn..2 LG iz iz 0.

n=l+1

o Calculate the matrices Fy, I 2 0 using the recurrent formulae

-1
Fo=LF = Z FAu(-Ap™ 121 (14)
=0
e Calculate the vector p, as the unique solution to the system of the linear algebraic
equations

Po(—~Agg) =0,
=0
. » Calculate the vectors p,, [ > 1 by

pr=poFn 2 1.

Note, that inverse matrices in (13), (14) exist and are nonnegative. So, the described
algorithm includes operations with nonnegative matrices only and is computationally stable,
This algorithm is implemented in computer program and showed its high quality. It is much
better comparing to any algorithms based on truncation of the state space of the Markov
chain,

6. CONCLUSION

Presented results allow to investigate a wide range of different queueing models de-
scribed in terms of continuous-time Markov chains. They can be useful for investigation
of many queueing models, in particular multi-server retrial queues and controlled queues.
After describing the behavior of the queueing model in terms of continuous-time Markov
chain, researcher should derive its generator and check its correspondence to definition of
continuous-time multi-dimensional asymptotically quasi-toeplitz Markov chain given in our
paper. After that our results can be formally used for calculating the steady state distribution
of the model. Informal things in investigation, which can be further done by the researcher
of a concrete queueing model, are attempts to simplify the stability condition by transfor-
mation it into the scalar form and denivation of expressions for performance measures of a
quecue under study.
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