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In this paper, we investigate the decomposition property of the M/G/1 retrial queue
with feedback in case of exponential and general retrial time distributions.
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1. INTRODUCTION: MODEL DESCRIPTION

We consider a single server queueing system with no waiting space at which primary
customers arrive according to a Poisson process with rate A > 0. An arriving customer
receives immediate service if the server is idle, otherwise he leaves the service area tempora-
rily to join the retrial group (orbit). Any orbiting customer produces a Poisson stream
of repeated calls with intensity 6 > O until the time at which he finds the server idle and
starts his service. The service times follow a general distribution with distribution function
B(x) having finite mean % and Laplace-Sticltjes transform B(s). After the customer is
served, he will decide either to join the orbit for another service with probability ¢ or to
[eave the system forever with probability ¢ = [ — ¢. Finaily, we admit the hypothesis of
mutual independence between all random variables defined above. The state of the system
at time ¢ can be described by means of the process {C(r), N, (1), L(#), 7 = 0}, where N,(7) is
the number of customers in the orbit, C(¢) is the state of the server at time . We have that
C(#) 1s 0 or 1 depending on whether the server is idle or busy. If C(¥) = 1, {(#) represents
the elapsed service time of the customer being served.

2. EMBEDDED MARKOV CHAIN AND ERGODICITY
CONDITION

Let &, be the time when the server enters the idle state for the n-th time. The sequence
of random variables {g, = N,(E}),n = 1} forms a Markov chain.
Consider the following fundamental equation

dna1 zqn_aq,,‘t'vn-i-] + . (1)

The random variable v,,; represents the number of primary customers arriving at the
system during the (n + 1)st service time interval. It does not depend on events which
have occurred before the beginning of the (n + 1)-st service. Iis distribution is given by

k=P == f %e*“db‘(x) with generating function E ki = BO. - ) [2). The
0 i=0
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Bernoulli random variable d,, is equal to I if the (n + 1)st served customer is an orbiting
customer, or to 0 if this customcr is a primary one. Its conditional distribution is given by
P, = 1/q, = k) = ;% and P(5,, = 0/q, = k) = ;2. The random variable u is 0 or
1 depending on whether the served customer leaves the system or goes to the orbit. We
have also that P(u = 0) = ¢ and P(u = 1) = ¢. The one-step transition probabilities of our
embedded Markov chain are
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Note that r,, £ 0 fork=0,1,...,m+ 1.

Theorem 1. The embedded Markov chain {q,,n > 1} is ergodic iff

A
p=—-+c<l.
¥

Proof. From (1), we can see that {g,,n = 1) is an irreductible and aperiodic Markov chain.
By applying Foster’s criterion and Kaplan’s condition, we demonstrate that {g,,»# > 1} is
ergodic if and only if p = % +c< 1.

Now, we find the stationnary distribution d; = lim P(g, = k). With the help of the

generating functions D(z) = E} diZ* and L(z) = Z z*, from (2), we obtain (p < 1)
k=0

D(z) =

(1 - )T + B - (1~ 2) ex ?\. 1 — (€ + cu)BO. - ?x,u) du 3)
@+ c)BO.~\3) ~z (E+c)Bh-2)~u |

0

3. STOCHASTIC DECOMPOSITION PROPERTY

Consider the expression (3). It is easy to see that the right hand part can be decomposed
into two factors

(1 -p)BL~hz)(1 - 2)
(¢ +c)BO -~z

D(z) =

1@+ covexp {?\. 1- (¢ + cu)B(h - lu) u} -

@+ c)BO. - ) —u

The first factor is the generating function for the number of customers in the M/G/1
queueing system with Bernoulli feedback [5]; the remaining one is the generating function
for the number of customers in the retrial queue with feedback given that the server is idle.

Now, we extend this result for general retrial time distribution. In the first time, we
introduce some notations. Let &, be the time when the server enters the idle state for the
n-th time; ¢ be the time at which the »-th fresh customer arrives at the server; X! be the
time elapsed since the last attempt made by the i-th customer in the orbit until instant &} ;
g = N,(E") be the number of customers in the orbit at instant E}. We assume that the
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system is in steady state. Let ¢ = ,}H?o Gn; Xi = lim X?. When g > 0, we have a vector

X = (X1, X, ... Xy). We denote by f,(x, X2, ..., x;) = fy(x) the joint density function of g
and X. Define

rij = llm P(C(g,:)-':i,No(g‘;):j) l"-"0$1 j=0$ 132,-";

dy=limPg, =k k=0,1,2,.. dk=ffk(x)dx k=12, ..
Q

o
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Consider the following fundamental equation for our embedded Markov chain {g,, n > 1}
sl = n — 6(qn;Xn) + Ve + U,

where &(g,: X") is 1 or 0 depending on whether the (n + 1)st served customer is an orbiting
customer or a primary one. When g, = 0, P(6(0; X") = 0) = P(6(0) = 0) = 1. Since the
random variables v,,1, ¢, — 0(¢.; X") and u are mutually independent, we have

E[z%"] = E[zqn-ﬁ(qu;x“)]E[zvnn 1E(Z"].
Let n — oo. We find

D(z) = E["" B0 - )@ + c2). 4

Using the rule of conditional expectation, we obtain

E [zq—ﬁ(q;X)] fi0E [Zf—ﬁ(j;x)] dx = (5)
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Consider f Ji(x) P (j:x) = 0)dx. This is the probability that an arriving customer finds
0

J customers in the orbit and no customer at the server. This event takes place if and only
if the last served customer leaves j customers in the orbit, he still did not decide to join
the orbit or to leave the system and the new arrival occurs before any of the j orbiting

customers retry for service. Therefore, r,; = [ f;(x) P(8 (j; x) = 0)dx.
b

We can rewrite (5) as
Ef0] = 100+ (1- Lo ©®
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Put (6) into (4), we obtain

(1 - p)BOL = 22X (1 - 2) y (T + c)Ry(2)
(E+c)BO -2 —2 l-p

The second factor on the right part of (7) is the generating function for the number of
customers in the retrial queueing system with feedback given that the server is idle when
the retrial times follow a generatl distribution. Note that if ¢ = 1, one can obtain the same
result as in {6] for the M/G/1 retrial queue without feedback.

D(@z) =

Q)
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