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1. Introduction 

In this talk, we consider the problem of surface design based upon a mesh that may contain triangu-
lar and quadrangular domains. Our goal is to investigate the cases when a combined mesh occurs 
more preferable for bivariate data interpolation than a pure triangulation.  

In scattered bivariate data interpolation, one is required to design a function that fits values  at a 
given point set  in the plane. A more general problem is to construct a sur-
face that passes through a given point set in the space. An approach based on a piecewise model 
supposes two steps, namely:  
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1. Generate a mesh that divides the convex hull of P into nonintersecting triangular or quadran-
gular domains with vertices at the points of P. A mesh that contains only triangular domains 
is called a triangulation. If a mesh with exclusively quadrangular domains exists, it is called 
a quadrangulation.  

2. Over every domain, compute a patch of surface that provides certain properties for the whole 
piecewise surface, such as continuity or smoothness. 

Among all meshes that exist for a given point set, only some “well structured” ones can be used for 
surface design. A general heuristic criterion is that the mesh should not contain domains with very 
large and very small angles. There are a lot of fast algorithms for constructing a triangular mesh with 
good measure of quality [2]. A well-known mesh is the Delaunay triangulation that maximizes the 
sum of circumscribing circle areas on each triangle and some other criteria [7]. 

As it was shown in [1, 4], in some cases the usage of quadrangle domains is more preferable than 
that of triangles. This result has provoked series of investigations that have been made for the last 
decade, namely, constructing optimal quadrangulations. The effect of permission to add Steiner 
points into interior or exterior of the domains has also been studied [5, 8].  

Below we present a modification of the well-known flipping algorithm that constructs a combined 
mesh that may contain triangular and quadrangular domains. Then we introduce quality measures 
for a single domain and compare integral interpolation errors and errors in gradients that give 
piecewise surface models produced by the flipping algorithm with these quality measures. 

2. The flipping algorithm 

Denote by t and q, respectively, a triangular and a quadrangular domain in a mesh. Let S1(t) and 
S2(q) be nonnegative scalar functions called the quality measures that satisfy the following condi-
tions: 

• S1(t) = S2(q) = 0 for degenerate domains t and q (the areas of t and q equal 0), 
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• S1(t), S2(q) ≤ 1 and there exist t* and q* such that  S1(t*) = S2(q*) = 1. 

• S1(t) and S2(q) are scale-invariant, that is depend on the shape but not the size of the do-
mains. 

The measures with these properties are called fair measures [3]. The standard flipping algorithm 
starts with some initial triangulation with a “good” measure of quality, for example, the Delaunay 
triangulation. Then each edge of the mesh that is a diagonal of a convex quadrangle is inspected to 
satisfy the flipping rule: for a diagonal e12 and its alternative e34 the flipping rule holds if 

S1(e12) < S1(e34), 

where S1(eij) = min {S1(ti), S1(tj)}, and ti and tj are the two triangles that share the diagonal eij. If the 
edge e12 satisfies the flipping rule, it is changed for e34. Such diagonal exchange is called a flip. The 
procedure is repeated for all edges until no flip yields further improvement. The meshes generated 
by this procedure are called locally optimal. It is known that the Delaunay triangulation can be ob-
tained by the flipping algorithm with min1  where minθ  is the minimum angle in t. )( θ=tS

The complexity of the flipping algorithm is O(n2) as this time may be needed to transform some 
source triangulation T1 to some target triangulation T2. But if T1 is close to T2 by its quality measure, 
the algorithm works very fast and in practice shows linear time. 

To obtain a combined mesh we add another alternative to improve a convex quadrangle q: the di-
agonal is eliminated if the elimination rule holds:  

S2(q) > max {S1(e12), S1(e34)},  

and thus a new quadrangular domain is created. Since the cycle on all edges runs only once, the ef-
fect of eliminating diagonals may be improved by sorting the edges on the value  

S2(q) – max {S1(e12), S1(e34)}. 

A common scheme of the algorithm that constructs a combined mesh is presented below: 

1. Construct the Delaunay triangulation, 

2. Run the standard flipping procedure with S1(t) as the quality measure, 

3. Sort the edges of the mesh that are diagonals of convex quadrangles on the value  

S2(q) – max {S1(e12), S1(e34)} 

and put them into a queue Q,  

4. Extract the first edge from Q and delete it from the mesh if it is a diagonal of a convex quad-
rangle and satisfies the elimination rule. Repeat this step until Q is empty. 

Note that the first edge in Q may occur a border edge between a triangle and a newly created quad-
rangle and thus cannot be deleted. The above remarks concerning complexity of the standard flip-
ping algorithm can be applied for the modified version as well, that is O(n2) for the worst-case per-
formance and O(n log n) in average. 

3. Quality measure functions 

Let now define quality measure functions S1 and S2 that can be applied to the both triangular and 
quadrangular domains. Since the structure of the mesh completely describes the shape of the piece-
wise linear surface, the quality of the mesh can be associated with the error of piecewise linear in-
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terpolation. Let f be a continuous scalar function and g be its linear approximation, both defined over 
a single domain t. Consider the Hessian matrix 
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and define the norms  and ∞−= ||||)( gftE ∞∇−∇= ||||)( gftEg . Then the following upper bounds 
hold [6]: 
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where  is the length of the longest side of t, R is the radius of its circumscribing circle and c  is 
the upper bound for the directional curvature of f:  

maxl t

t
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for any tp ∈  and any unit direction vector d. As it follows from (1), the interpolation error corre-
lates with the size of the domain, whereas the error of the gradient is defined by its shape and ap-
proaches infinity when the largest angle of t approaches 180°. Similar upper bounds hold for a single 
quadrangle domain q and bilinear function g [1]. 

Consider two pairs of quality measure functions [S1(t), S2(q)] and [S3(t), S4(q)] that can be applied to 
domains of the both types∗. (A denotes the area of the domain). 
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Here  denotes the radius of the maximum circumscribing circle on all four triples of vertices of 
q. The measure S

maxR
1(t) in (2) is similar to min1  that produces the Delaunay triangulation. We 

use this form here to take more care about excluding large angles in triangular and quadrangular 
domains. The measure S3(t) in (3) is mentioned in [6] in the equivalent form 

)( θ=tS
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as the one of the most efficient measures that correlate with the errors of the gradients of an interpo-
lated piecewise linear function. A similar function S4(q) is used for a quadrangle domain where 

 in the denominator controls the value of large angles. 2

                                                

maxR

Contour plots on Figure 2 illustrate dependence of the measure value on the domain shape. For a 
triangle, one side (displayed by the bold line) is fixed whereas the third vertex varies along with the  

 
∗ See [6] for a detailed review of quality measures for triangular domains. 
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Figure 2: Quality measures for triangular and quadrangular domains 

S3(t) 

S4(q), square 

S4(q), rectangle S2(q), rectangle 

S2(q), square 

S1(t) 

  



shape of the triangle. The dotted line shows the optimal shape. The measure of a quadrangle is pre-
sented for a square and a rectangle with two sides fixed.  

An equilateral triangle is the optimal shape for S1(t) and S3(t) as well as a square is optimal for S2(q) 
and S4(q). It seems a surprising fact that a rectangle is not the optimal shape for S4(q) if two perpen-
dicular sides are fixed. Indeed, the area of the upper right triangle of q with a vertex on the fixed cir-
cumscribing circle takes its maximum when its upper and right sides have the same length.  

Now let us try to determine which of the two pairs,  [S1(t), S2(q)] or [S3(t), S4(q)], is more preferable 
for the piecewise combined linear and bilinear interpolation. Tables 1-3 present the results of the 
computational experiment that was carried out to compare interpolation errors and errors in gradi-
ents for the above four measures and three types of test functions, namely, strictly convex, saddle-
shaped and randomly shaped. The latter function was generated so that the number of local extremes 
did not exceed the number of the vertex in the mesh. The total interpolation error and the total error 
in gradients were computed as an approximated value of the L2-norm over all triangular and quad-
rangular domains in the mesh. The tests were made for 500 points distributed uniformly in a circle. 
For each test function there were generated 20 point distributions, the average error values were 
taken as the result. The values of interpolation errors and errors in gradients for a convex test func-
tion are presented in Table 1. Similar results for a saddle-shaped and random test functions are pre-
sented in Tables 2 and 3. The minimum and the maximum error values in a column are denoted re-
spectively by ‘+’ and ‘–’. 

Table 1: Summary error values for con-
vex test function 

Measure 2|||| gf −  2|||| gf ∇−∇  

S1(t) 1.47488(+) 1.36158(+) 

S2(q) 1.48296   1.36387 

S3(t) 1.49133(-) 1.36252(-) 

S4(q) 1.47829   1.36528 

Table 2: Summary error values for saddle-
shaped test function 

Measure || f – g ||2 || ∇f – ∇g ||2 

S1(t) 0.43240 0.39430 

S2(q) 0.41975 0.38893 

S3(t) 0.44917(-) 0.39478(-) 

S4(q) 0.41348(+) 0.38847(+) 

 

The experiment shows that a triangular mesh with 
the shape quality S1(t) provides the best quality of 
interpolation only if the interpolated function is 
strictly convex, as well as a saddle-shaped func-
tion is well interpolated by bilinear patches within 
a combined mesh. The measure S4(q) works a lit-
tle bit better than S2(q), but they both give an es-
sential gain to a combined mesh in compare with 
a pure triangulation.   These two experimental re-
sults correlate with the theoretical ones [1].  

The results in Table 3 demonstrate smaller error 
values provided by combined meshes and, what is 

more interesting, better stability for randomly shaped test functions that are good models of real ter-
rain surfaces.  

Table 3: Summary error values for ran-
domly shaped test function 

Measure || f – g ||2 || ∇f – ∇g ||2 

S1(t) 19.53332 7.16701(-) 

S2(q) 19.21260(+) 7.00942(+) 

S3(t) 19.62211(-) 7.15842 

S4(q) 19.21331    7.02106 
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4. Some other resources for mesh improvement 

The elimination rule allows decreasing the number of domains with large angles in a combined 
mesh. Nevertheless, any well-shaped triangulation or combined mesh may occur impossible for 
point configurations such as presented below:  

One remedy from this disease is adding into the mesh interior or exterior Steiner points [2]. How-
ever, in some applications, no acceptable procedure can automatically evaluate or approximate the 
interpolated function at the additional points. Thus, another aspect of the mesh generation problem 
arises: is it possible to improve a locally optimal mesh without using Steiner points? The method 
that we propose acts in the opposite direction: we continue rarefying the mesh and exclude some 
“bad” input points from the mesh generating procedure. Because the function values at these points 
should not be lost, the surface must now contain nonlinear patches such that the resulting surface 
passes through the excluded points. The goal for further investigations can be finding a compromise 
between simplicity of the patch model and requested accuracy.  
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