The Canonical Order and Optimization Problems

MICHAIL M. KOVALEV AND DMITRI M. VASILKOV¹

Belarus State University, Faculty of Applied Mathematics and Informatics, Prospekt F. Skarina 4, 220050 Minsk, Belarus

e-mail: on.kovalev@zib-berlin.de

Abstract: Using the partial order technique, we describe a subclass of objective functions taking their optimum at the greedy point of a given feasible polyhedron in \mathbb{R}^n .

Key Words: Canonical order, greedy algorithm, linear programming.

1 Introduction

The relation \prec of the canonical order is defined on \mathbb{R}^n by

$$x < y \Leftrightarrow g_s(x) \le g_s(y)$$
 $s = 1 \dots n$

where $g_s(x) = \sum_{i=1}^{s} x_i$. The **greedy** solution x^g of the problem

$$\max\{f(x)|x\in D\}\tag{1}$$

is defined as the lexicographical maximum of the feasible set D.

As it was shown in [1, 2, 3], optimality of the greedy solution is closely connected with existence in the feasible set a single maximum w.r.t. \prec . Namely, the greedy algorithm on a polymatroid always provides the optimal solution for any nonnegative linear objective function, whereas polymatroids are a unique class of polyhedra in \mathbb{R}^n which have a single maximum w.r.t. \prec for any ordering of variables. In [4] we've obtained conditions defining a polyhedron in \mathbb{R}^n with

Supported by the Belarusian Foundatmental Research Found

a single maximum x^* for a *fixed* order of variables. It was also shown that a class \mathscr{F} of all continuously differentiable functions (C^1 -functions), isotone w.r.t. \prec , is defined by

$$0 \le \frac{\partial f}{\partial x_{i+1}}(x) \le \frac{\partial f}{\partial x_i}(x) \quad \text{for all} \quad x \in \mathbf{R}^n , \quad i = 1 \dots n - 1 .$$
 (2)

Thus, for any $f \in \mathcal{F}$ and for certain class of feasible polyhedra it holds $x^{opt} = x^* = x^g$.

Here we consider the following problem.

Problem 1: Given an arbitrary feasible polyhedron $D \in \mathbb{R}^n$, describe a class $\mathcal{F}(D)$ of objective functions which take their maximum at the greedy point.

Our goal is to describe a subclass in $\mathcal{F}(D)$ using the partial order technique. The main idea consists in introducing on \mathbb{R}^n a relation \prec^h of the generalized canonical order, and describing a family of all orders \prec^h for which the poset (D, \prec^h) has a single maximum. Since a single maximum w.r.t. \prec^h always coincides with the greedy solution, corresponding classes of isotone functions turns to belong to $\mathcal{F}(D)$.

2 Generalized Canonical Order

Let \mathcal{M} be a class of strictly increasing separable concave functions on \mathbb{R}^n . For $h(x) = \sum_{i=1}^n h_i(x_i) \in \mathcal{M}$ we denine a relation \prec^h of the **generalized** canonical order by

$$x <^h y \Leftrightarrow g_s^h(x) \le g_s^h(y)$$
 $s = 1 \dots n$

where $g_s^h(x) = \sum_{i=1}^s h_i(x_i)$. Note that \prec^h defines a partial order (the antisymmetric property follows from strict increasing of h).

We say that an order $<_1$ includes an order $<_2$ if $x <_2 y$ yields $x <_1 y$. It is easy to show that the lexicographical order includes any canonical order $<^h$ which, in its turn, includes the coordinate order. Moreover, the order $<^h$ approaches the lexicographical order if $h_i(t) = \varepsilon^i t$ and $\varepsilon \to 0$. Similarly, it approaches the coordinate order if $h_i(t) = \varepsilon^{-i} t$ and $\varepsilon \to 0$.

Conditions defining the class $\mathscr{F}^h \subset C^1$ of isotone functions w.r.t \prec^h can be easily obtained from (2) by substitution $x_i = h_i(z_i)$:

$$0 \le \frac{h_i'(x_i)}{h_{i+1}'(x_{i+1})} \frac{\partial f}{\partial x_{i+1}}(x) \le \frac{\partial f}{\partial x_i}(x) \quad \text{for all} \quad x \in \mathbf{R}^n , \quad i = 1 \dots n - 1 .$$
(3)

The class \mathscr{F}^h contains, in particlar, each function g_s^h and any composition $F(y_1(x), \ldots, y_m(x))$, nondecreasing on y, and with $y_i(x) \in \mathscr{F}^h$.

Our aim is to describe a family of all orders \prec^h such that $\mathscr{F}^h \subset \mathscr{F}(D)$. Note that if (D, \prec^h) has a single maximum x^* then $x^* = x^{opt}$ for any $f \in \mathscr{F}^h$. On the other hand, if x^* exists, then $x^* = x^g$, since the lexicographical order includes \prec^h . Thus, the problem is reduced to the next one.

Problem 2: Given an arbitrary polyhedron in \mathbb{R}^n , describe the set $\mathcal{L}(D)$ of all $h \in \mathcal{M}$ for which (D, \prec^n) has a single maximum.

Remark: Suppose we want to solve (1) with incomplete knowledge about the objective function f. All information we have is that f is isotone w.r.t. some order $<^h$. Then the functions $w_i(x) = h'_i(x_i)/h'_{i+1}(x_{i+1})$ report how much information we have. For example, if $w_i(x) \equiv \varepsilon \to 0$, then condition (3) reduces to inequalities $\frac{\partial f}{\partial x_i}(x) \ge 0$ reporting only that f is a nondecreasing function. In this sense, problem 2 may have another interpretation: how much information about the objective function is enough to solve problem (1) if the objective function is unknown?

We'll need the following lemma.

Lemma 1: The greedy solution x^g is a single maximum of (D, \prec^h) iff it is the optimal solution for n problems

$$\max\{g_s^h(x)|x\in D\} \qquad s=1\ldots n \ . \tag{4}$$

Indeed, the optimal solution for (4) satisfies $x <^h x^g$ for all $x \in D$.

For $h \in \mathcal{M}$ define an *n*-vector $\nabla g_s^h(x) = (h_1'(x_1), \dots, h_s'(x_s), 0, \dots, 0)$ and a matrix

$$VG^{h}(x) = \begin{bmatrix} Vg_{1}^{h}(x) \\ \vdots \\ Vg_{n}^{h}(x) \end{bmatrix}.$$

Let $D = \{x \in \mathbb{R}^n : Ax \le b\}$ be a nondegenerate polyhedra and A_B be a basic submatrix corresponding to x^g (x^g is always a basic solution by definition).

Theorem 1: The greedy solution x^g is a single maximum of (D, \prec^h) iff

$$VG^h(x^g)A_B^{-1} \ge 0 (5)$$

Proof: Problems (4) are problems with concave objective functions and linear restrictions. According to the Kuhn-Tucker conditions for problems of this kind, x^g is the optimal solution for $\max\{g_s^h(x)|x\in D\}$ iff there exists a vector $\lambda \geq 0$ such that

$$\nabla g_s^h(x^g) - \lambda A_B = 0 . ag{6}$$

Writing (6) for every $s = 1 \dots n$, we obtain (5).

Corollary 1: The greedy solution is optimal for any $f \in \mathcal{F}^h$ iff the feasible polyhedron satisfies (5).

Note that condition (5) is defined by values of h'_i only at the greedy point. Denote $\alpha_i = h'_i(x_i^g)$ and consider (5) as a system of inequalities w.r.t. α under the condition $h'_i(x^g) > 0$:

$$\sum_{i=1}^{s} \alpha_i \overline{a}_{ij} \ge 0 \qquad s = 1 \dots n , \qquad j = 1 \dots n ,$$

$$\alpha_i > 0 \qquad i = 1 \dots n ,$$

$$(7)$$

where \bar{a}_{ij} is an element of A_B^{-1} .

Let $\mathcal{A}(D)$ be the set of feasible solutions of (7). The following theorem gives the solution of problem 2.

Theorem 2: For an arbitrary polyhedron D in \mathbb{R}^n the set $\mathcal{L}(D)$ is always nonempty and is defined as follows

$$\mathcal{L}(D) = \bigcup_{\alpha \in \mathcal{A}(D)} \left\{ h \in \mathcal{M} : \nabla g_n^h(x^g) = \alpha \right\} .$$

Proof: It suffices to show that $\mathcal{L}(D)$ is nonempty, i.e. to find $h \in \mathcal{M}$ such that (D, \prec^h) has a single maximum.

Let $\varepsilon > 0$ satisfies the following: if x and y are basic solutions and $x \neq y$, then

$$\varepsilon < |x_i - y_i| < \frac{1}{\varepsilon}$$
.

Define $h(x) := \alpha x$ with $\alpha := \left(1, \frac{\varepsilon^2}{2}, \left(\frac{\varepsilon^2}{2}\right)^2, \dots, \left(\frac{\varepsilon^2}{2}\right)^{n-1}\right)$. Then x^g is a single maximum w.r.t. \prec^h by lemma 1. Indeed, let x be any basic solution and let $i = \min\{1 \le j \le n: x_j \ne x_j^g\}$. Then for any linear $f(x) = cx \in \mathscr{F}^h$ (including $g_s^h(x)$) we have

$$\begin{split} c(x^g - x) &= c_i(x_i^g - x_i) + c_{i+1}(x_{i+1}^g - x_{i+1}) + \dots + c_n(x_n^g - x_n) \\ &\geq c_i \varepsilon - c_{i+1} \frac{1}{\varepsilon} - \dots - c_n \frac{1}{\varepsilon} \\ &\geq c_i \left(\varepsilon - \frac{\varepsilon^2}{2} \frac{1}{\varepsilon} - \left(\frac{\varepsilon^2}{2} \right)^2 \frac{1}{\varepsilon} - \dots - \left(\frac{\varepsilon^2}{2} \right)^{n-1} \frac{1}{\varepsilon} \right) > 0 \ . \end{split}$$

3 Some Examples

Consider a problem

$$\max\{f(x): ax \le b, 0 \le x \le d\} \tag{8}$$

where a, b > 0. It is easy to see that the greedy solution for (8) is of the form

$$x^{g} = \left(d_{1}, \dots, d_{k-1}, \frac{1}{a_{k}} \left(b - \sum_{i=1}^{k-1} a_{i} d_{i}\right), 0, \dots, 0\right).$$

$$(9)$$

where $1 \le k \le n$. The problem is to describe $\mathcal{L}(D)$, i.e. to find all $h \in \mathcal{M}$ such that x^g is optimal for any $f \in \mathcal{F}^h$.

Corollary 2: A function $h \in \mathcal{M}$ belongs to $\mathcal{L}(D)$ iff for any i and j such that $1 \le i < k < j \le n$, it holds

$$\frac{h'_{i}(x_{i}^{g})}{a_{i}} \ge \frac{h'_{k}(x_{k}^{g})}{a_{k}} \ge \frac{h'_{j}(x_{j}^{g})}{a_{i}} . \tag{10}$$

Proof: The basic matrix and its inverse corresponding to x^g are the following

$$A_{B} = \begin{bmatrix} I & 0 \\ a_{1} & \cdots & a_{k} & \dots & a_{n} \\ 0 & -I \end{bmatrix} \quad \text{and}$$

$$A_{B}^{-1} = \begin{bmatrix} I & 0 \\ -\frac{a_{1}}{a_{k}} & \cdots & \frac{1}{a_{k}} & \cdots & \frac{a_{n}}{a_{k}} \\ 0 & -I \end{bmatrix}.$$

Hence, as theorem 2 implies, $h \in \mathcal{M}$ belongs to $\mathcal{L}(D)$ iff

$$\begin{split} h_i'(x_i^g) - \frac{a_i}{a_k} h_k'(x_k^g) &\geq 0 \qquad \text{for } i < k \qquad \text{and} \\ -h_j'(x_i^g) + \frac{a_j}{a_k} h_k'(x_k^g) &\geq 0 \qquad \text{for } k < j \ . \quad \blacksquare \end{split}$$

Acknowledgement: We are very grateful to the unknown referees for useful comments and remarks. We would espeically like to thank the referee who proposed a short and elegant proof of theorem 2.

References

[1] Edmonds J (1970) Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and their Applications. Gordon and Breach, New York 69-87

- [2] Zimmermann U (1977) Some partial orders related to boolean optimization and the greedy algorithm. Annals of Discrete Mathematics 1:539-550
- [3] Kovalev M (1987) Matroids in discrete optimization. Belarusian University Press, Minsk (in Russian)
- [4] Kovalev MM, Vasilkov DM The canonical order and greedy algorithms. European Journal of Operational Research