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Abstract: Using the partial order technique, we describe a subclass of objective functions taking
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1 Imtroduction

The relation < of the canonical order is defined on R" by

x<Y°gs(X)Sgs(J’) S=1...I’l
where gy(x) = Y, x;. The greedy solution x? of the problem
i=1

max{ f(x)|x € D} 6]

is defined as the lexicographical maximum of the feasible set D.

As it was shown in [1, 2, 3], optimality of the greedy solution is closely
connected with existence in the feasible set a single maximum w.r.t. <. Namely,
the greedy algorithm on a polymatroid always provides the optimal solution for
any nonnegative linear objective function, whereas polymatroids are a unique
class of polyhedra in R” which have a single maximum w.r.t. < for any ordering
of variables. In [4] we’ve obtained conditions defining a polyhedron in R” with
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a single maximum x* for a fixed order of variables. It was also shown that a
class & of all continuously differentiable furictions (C'-functions), isotone w.r.t.
<, is defined by

of
0%i4

of
ox;

0< x) < —(x) forall xeR", i=1...n—-1. 2

Thus, for any f € & and for certain class of feasible polyhedra it holds x°¥ =
x* = x4,
Here we consider the following problem.

Problem 1: Given an arbitrary feasible polyhedron D € R”, describe a class (D)
of objective functions which take their maximum at the greedy point.

Our goal is to describe a subclass in # (D) using the partial order technique. The
main idea consists in introducing on R” a relation <* of the generalized canoni-
cal order, and describing a family of all orders <" for which the poset (D, <*)
has a single maximum. Since a single maximum w.r.t. <* always coincides with
the greedy solution, corresponding classes of isotone functions turns to belong
to Z(D).

2 Generalized Canonical Order

Let .# be a class of strictly increasing separable concave functions on R”. For
h(x) = ) hi(x;) € 4 we denine a relation <" of the generalized canonical order
i=1

by

x<"yeghx)<ghy) s=1..n

where g/(x) = ). hy(x;). Note that <* defines a partial order (the antisymmetric
i=1

property follows from strict increasing of ).

We say that an order <, includes an order <, if x <, y yields x <; y. It is
easy to show that the lexicographical order includes any canonical order <"
which, in its turn, includes the coordinate order. Moreover, the order <*
approaches the lexicographical order if h(t) = ¢t and &— 0. Similarly, it
approaches the coordinate order if h;(z) = ¢ 7t and ¢ — 0.
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Conditions defining the class #" = C* of isotone functions w.r.t <* can be
easily obtained from (2) by substitution x; = h;(z;):

oo M) o

T R (i) 0xp4q

f

—(x) < () forall xeR", i=1...n—1.

G)

The class #* contains, in particlar, each function g* and any composition
F(y4(x), ..., yu(x)), nondecreasing on y, and with y;(x) e F*.

Our aim is to describe a family of all orders <" such that #* = #(D). Note
that if (D, <") has a single maximum x* then x* = x°7 for any f € #*. On the
other hand, if x* exists, then x* = x7, since the lexicographical order mcludes
<*. Thus, the problem is reduced to the next one.

Problem 2: Given an arbitrary polyhedron in R", describe the set £(D) of all
he M for which (D, <") has a single maximum.

Remark: Suppose we want to solve (1) with incomplete knowledge about the
objective function f. All information we have is that f is isotone w.r.t. some
order <". Then the functions w;(x) = h(x;)/h},(x;.1) report how much informa-
tion we have. For example, if w,(x) = ¢ — 0, then condition (3) reduces to in-

equalities 5]:(x) > 0 reporting only that f is a nondecreasing function. In this
X; ‘
sense, problem 2 may have another interpretation: how much information about
the objective function is enough to solve problem (1) if the objective function is
unknown?

We'll need the following lemma.

Lemma 1: The greedy solution x? is a single maximum of (D, <*) iff it is the
optimal solution for n problems

max{g?(x)|x € D} s=1..n. (4)
Indeed, the optimal solution for (4) satisfies x <* x¢ for all x € D.

For he # define an n-vector Fgh(x) = (W,(x), ..., Hi(x,),0,...,0) and a
matrix

Vg1(x)
VG'(x) =

Vgn(x)
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Let D = {x € R*: Ax < b} be a nondegenerate polyhedra and Ay be a basic sub-
matrix corresponding to x? (x? is always a basic solution by definition).

Theorem 1: The greedy solution x? is a single maximum of (D, <") iff

VG'"(x9Az' =0 . ®)

Proof: Problems (4) are problems with concave objective functions and linear
restrictions. According to the Kuhn-Tucker conditions for problems of this
kind, x? is the optimal solution for max{g”(x)|x € D} iff there exists a vector
A = 0 such that

Vgh(x?) — Adg =0 . (6)

Writing (6) for every s = 1... n, we obtain (5). W

Corollary 1: The greedy solution is optimal for any f € F" iff the feasible poly-
hedron satisfies (5).

Note that condition (5) is defined by values of h; only at the greedy point.

Denote a; = hi(x¢{) and consider (5) as a system of inequalities w.r.t. o under the
condition kj(x?) > 0:

_Zlociﬁijzo s=1...n, j=1...n, (7
a;>0 i=1l...n,

where a;; is an element of Az'.
Let </(D) be the set of feasible solutions of (7). The following theorem gives
the solution of problem 2.

Theorem 2: For an arbitrary polyhedron D in R" the set (D) is always nonempty
and is defined as follows

D)= {J ){he/l: Vghx?) = o} .

xe (D
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Proof: It suffices to show that #(D) is nonempty, i.e. to find h € .# such that
(D, <") has a single maximum.
Let & > O satisfies the following: if x and y are basic solutions and x # y, then

1
8<lxl—y,|<—.
&

82 82 2 82 n—1
Define h(x):= ax with a:= <1’5’(E) sy (E) > Then x? is a single
maximum w.r.t. <* by lemma 1. Indeed, let x be any basic solution and let
i=min{l <j<n:x;#x/}. Then for any linear f(x)=cxe #" (including
g*(x)) we have

c(x? — x) = ¢;(xf — x;) + €org (Xleg — Xiag) + 0 + cu(x5 — x,)

3 Some Examples

Consider a problem
max{f(x):ax <b,0 < x < d} ®

where g, b > 0. It is easy to see that the greedy solution for (8) is of the form

1 k-1
x9=<d1,...,dk_1,—<b—Za,-d,-),O,...,O). )

ay i=1

where 1 < k < n. The problem is to describe #(D), i.e. to find all he .# such
that x¢ is optimal for any f € #*.



166 M. M. Kovalev and D. M. Vasilkov

Corollary 2: A function he .# belongs to (D) iff for any i and j such that
1 <i<k<j<mn,it holds

Bt WE) )
a; X 4

(10)

Proof: The basic matrix and its inverse corresponding to x?¢ are the following

I 0
Ag= la;, - a ... a, and
0 -1
I 0 )
0 -1

Hence, as theorem 2 implies, h € .# belongs to #(D) iff
Hi(x8) — %h;,(x,-‘j) >0 fori<k and
k

—Hy(xf) + %h;c(x,i’) >0 fork<j. M
k
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