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1 Introduction 

The relation -< of the canonical order is defined on R" by 

x -< y ~ g A x )  <_ g a y )  s = 1 . . .  n 

where gs(x)  = ~" x i. The greedy solution x ~ of the problem 
i = 1  

m a x { f i x ) I x  e D }  (1) 

is defined as the lexicographical maximum of the feasible set D. 
As it was shown in [1, 2, 3], optimality of the greedy solution is closely 

connected with existence in the feasible set a single maximum w.r.t. -<. Namely, 
the greedy algorithm on a polymatroid always provides the optimal solution for 
any nonnegative linear objective function, whereas polymatroids are a unique 
class of polyhedra in R" which have a single maximum w.r.t. <~ for any ordering 
of variables. In [4] we've obtained conditions defining a polyhedron in R" with 
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a single maximum x* for a f ixed order of variables. It was also shown that a 
class ~ of all continuously differentiable functions (C 1-functions), isotone w.r.t. 
-<, is defined by 

~f ~f 
0 _< x - L -  (x) _< ae- (x) for all x ~ R " ,  i =  1 . . . n - 1  (2) I 

GXi+ 1 ax~ 

Thus, for any f e ~ and for certain class of feasible polyhedra it holds x ~ = 
X* -~- X g. 

Here we consider the following problem. 

Problem 1: Given an arbitrary feasible polyhedron D ~ R", describe a class ~ (D) 
of objective functions which take their maximum at the greedy point. 

Our goal is to describe a subclass in Y(D) using the partial order technique. The 
main idea consists in introducing on R" a relation .<h of the generalized canoni- 
cal order, and describing a family of all orders .<h for which the poset (D, .<h) 
has a single maximum. Since a single maximum w.r.t. ~h always coincides with 
the greedy solution, corresponding classes of isotone functions turns to belong 
to ~(D). 

2 Generalized Canonical Order 

Let Mr be a class of strictly increasing separable concave functions on R". For 

h(x) = ~ h~(xi) ~ Jg we denine a relation ~h of the generalized canonical order 
i=1  

by 

<" y g (x) _< g (y) s = 1 . . .  n 

where g~(x) = ~ hi(xi). Note that .<h defines a partial order (the antisymmetric 
i = l  

property follows from strict increasing of h). 
We say that an order <I includes an order <2 if x <2 Y yields x <a Y. It is 

easy to show that the lexicographical order includes any canonical order .<h 
which, in its turn, includes the coordinateorder.  Moreover, the order ~h 
approaches the lexicographical order if hi(t ) = e~t and e ~ 0. Similarly, it 
approaches the coordinate order if h~(t) = e-it and e -~ 0. 
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Conditions defining the class ffh c C 1 of isotone functions w.r.t .<h can be 
easily obtained from (2) by substitution x~ = hi(z,): 

O< h;(xi) Of (x) <_ J i ( x )  for all x ~ R "  
- h ' i + l ( x i + l )  c~x~+l 

i = l . . . n - 1  . 

(3) 

The class ~-h contains, in particlar, each function gh and any composition 
F(y l (x )  . . . .  , y,,(x)), nondecreasing on y, and with yi(x) e ~h .  

Our aim is to describe a family of all orders Mh such that ~-h c ~(D). Note 
that if (D, Mh) has a single maximum x* then x* = x ~ for any f e ~h.  On the 
other hand, if x* exists, then x* = x o, since the lexicographical order includes 
Mh. Thus, the problem is reduced to the next one. 

Problem 2: Given an arbitrary polyhedron in R", describe the set 5~(D) of  all 
h E ~ for which (D, .<h) ha s a single maximum. 

Remark: Suppose we want to solve (1) with incomplete knowledge about the 
objective function f. All information we have is that f is isotone w.r.t, some 
order .<h. Then the functions wi(x) = h'i(xi)/h'i+l(xi+l) report how much informa- 
tion we have. For example, if wi(x) =- ~ ~ O, then condition (3) reduces to in- 

(x) > 0 reporting only that f is a nondecreasing function. In this equalities 

sense, problem 2 may have another interpretation: how much information about 
the objective function is enough to solve problem (1) if the objective function is 
unknown? 

We'll need the following lemma. 

Lemma 1: The greedy solution x ~ is a single maximum of (D, ~,h) iff it is the 
optimal solution for n problems 

max{gh(x)l x ~ D} s = 1 . . .  n . (4) 

Indeed, the optimal solution for (4) satisfies x .<h X o for all x ~ D. 
For h sJr define an n-vector vgh(x )=  (h'l(Xl) . . . . .  h'~(xs),O, . . . ,0)  and a 

matrix 

vg~(x) 

VGh(x) = 

Vg~(x) 
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Let D = {x e R": Ax <_ b} be a nondegenera te  polyhedra  and A B be a basic sub- 
matr ix  corresponding to x ~ (x ~ is always a basic solution by definition). 

Theorem 1: The greedy solution x g is a single maximum of (D, Mh) iff 

VGh(xg)A~ 1 > 0 . (5) 

Proof." Problems  (4) are p rob lems  with concave objective functions and linear 
restrictions. According to the K u h n - T u c k e r  condit ions for p roblems of this 
kind, x g is the opt imal  solution for max{ghs(x)[x e O} iff there exists a vector  
2 > 0 such that  

Vg~(x ~ - 2A B = 0 . (6) 

Writ ing (6) for every s = 1 . . .  n, we obtain  (5). [] 

Corollary 1: The greedy solution is optimal for any f ~ ~ h  iff the feasible poly- 
hedron satisfies (5). 

No te  tha t  condit ion (5) is defined by values of h'i only at the greedy point. 
t g Denote  ei = hi(x~ ) and consider (5) as a system of inequalities w.r.t. ~ under  the 

condit ion h'i(x g) > 0: 

~ e i ~ q _ > O  s =  1 . . . n  , j =  1 . . . n  , (7) 
i=1 

~ i > O  i =  l . . . n  , 

where aij is an element of AB 1. 
Let d ( D )  be the set of feasible solutions of (7). The following theorem gives 

the solut ion of p rob lem 2. 

Theorem 2: For an arbitrary polyhedron D in R" the set ~(D)  is always nonempty 
and is defined as follows 

s ~ {h~Jg:Vgh(x  0 )=~}  . 
e ~ ( D )  
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Proof." It suffices to show that ~(D)  is nonempty, i.e. to find h ~ ~//g such that 
(O, .<h) has a single maximum. 

Let e > 0 satisfies the following: ifx and y are basic solutions and x ~ y, then 

1 
< , I x i  - _.vll < - �9 

g F 

Define h ( x ) : =  ex with c~ := 1,~- . . . . . . .  Then x a is a single 

maximum w.r.t..<h by lemma 1. Indeed, let x be any basic solution and let 
i = min{1 < j  < n: xj ~ x]}. Then for any linear f ( x )  = cx  ~ ~ h  (including 
#~h(x)) we have 

c ( x "  - x )  = c , ( x f  - x , )  + c i+~(x f§  - x i+~)  + " "  + c . ( x g  - x . )  

1 1 
C i ~  - -  e l +  1 . . . . .  C n 

( e2 1 (e2~2 1 ... ( ~ ) , - 1  ~)  
__c~ ~ 2 ~  \ ~ j  ~ -  - > 0 .  �9 

3 Some Examples 

Consider a problem 

m a x { f  (x): ax  < b, 0 < x < d} ( 8 )  

where a, b > 0. It is easy to see that the greedy solution for (8) is of the form 

,-, . . . . .  0 ) .  (9) 

where 1 < k < n. The problem is to describe &a(D), i.e. to find all h e J/~ such 
that x ~ is optimal for any f e ,~h. 
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Corollary 2: A function h ~ i l l  belongs to ~ ( D )  iff for  any i and j such that 
1 < i < k < j  <_ n, it holds 

t g ~ g 
h'i(x~) hk(Xk) hj(xj ) 
- -  ___ _) ( 1 0 )  

a~ a k aj 

Proof'. T h e  bas ic  m a t r i x  a n d  its inverse  c o r r e s p o n d i n g  to x ~ are  the  fo l l owing  

.Ia a I and 
0 

an 
~  

ak 
A~ 1 = 

I 0 

�9 "" O k  . . ~  

0 - I  

I 

a 1 1 

ak ak 

0 - I  

Hence ,  as t h e o r e m  2 implies ,  h E J g  be longs  to ~ ( D )  iff 

, g ai h , l~g ~ h i ( x i  ) - akk kt~k] 2 0 for  i < k a n d  

- h j ( x i )  + - - . k t . k j  >-- 0 for  k < j  . �9 
ak 
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