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Abstract. The development of methods to detect investigation of an intrinsically-
stationary stochastic processes and fields is a very important problem in data
analysis. Variogram is a main characteristic intrinsically-stationary stochas-
tic processes in time area. It is used for measuring the variability in space.
The usual estimators of variogram are highly non-robust. We can find sev-
eral alternative (robust) examples for estimation in the literature. The theory
of construction of robust variogram estimators of the intrinsically-stationary
random processes is developed in this paper. The estimators of variogram are
constructed and its statistical properties are investigated.

1 Introduction

Consider a random process X(s), s ∈ R. Then intrinsic stationarity is defined
through first differences:

M {X(s1)−X(s2)} = 0, D {X(s1)−X(s2)} = 2γ(s1 − s2),

s1, s2 ∈ R [1]. The quantity 2γ(s) is known as the variogram. The variogram
depends only on the relative position of the two variables X(s1) and X(s2). The
semi-variogram γ(s) is often synonymously named variogram when the usage is
clear.

The term of variogram was coined by G. Matheron [2], although earlier appear-
ances of this function can be found in the scientific literature. The variogram is
the most important tool for the structural analysis of spatial phenomenons. It is
the basis for further analysis, for example interpolation or extrapolation of values
including the precision of estimation.

2 Estimators of the Variogram.

It is a matter of common experience that values often do not follow the normal
distributions assumed for them, but, instead, follow some other heavier-tailed dis-
tribution. In this article we discuss the robust estimation of the variogram when
the distribution is normal-like in the central region but heavier than normal in the
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tails. It is shown that the use of M-estimation yields stable robust estimates of the
variogram.

Let X(s), s ∈ R, be a zero-mean intrinsically-stationary stochastic process of
independent increments, with unknown variogram 2γ(s), s ∈ R. Define

Us(h) = (X(s+ h)−X(s))2, s, h ∈ R.

Then MUs(h) = 2γ(h). We can write 2γ(h) in the following way:

2γ(h) = M
h−1∑
i=0

{X(s+ h− i)−X(s+ h− i− 1)}2 = h2γ(1).

Therefore, the estimation of the variogram 2γ(1) becomes a problem of estimat-
ing the expectation of random of Us(1), s ∈ R.

The estimators of variogram 2γ(1) in terms of sequence of observations

X(1), X(2), ..., X(n)

are defined as:
1. The mean

Ū(1) =
1

n− 1

n−1∑
s=1

Us(1),

where Us(1) = (X(s+ 1)−X(s))2;
2. The median

Ũ(1) =

{
U n

2
(1), (n− 1) = 2m+ 1,

0, 5
(
U n−1

2
(1) + U n−1

2
+1(1)

)
, (n− 1) = 2m,

where U1(1) ≤ ... ≤ Un−1(1) represent the ordered sample Us(1), s = 1, n− 1,
m = 1, 2, ...;

3. The trimmed mean

T1(α) =
n−k−1∑
s=k+1

U s(1)

n− 2k − 1
,

where U s(1) represent the ordered sample Us(1), s = 1, n− 1, k = [(n− 1)α] − the
whole part of number (n− 1)α, α ∈ [0, 1

2
).

Notice that
3.1. α = 0, 001; 3.2. α = 0, 05; 3.3. α = 0, 1; 3.4. α = 0, 25.
Theorem. The statistics 1-3 are unbiased and consistent in sense of a conver-

gence in probability estimators for variogram 2γ(1).
Proof. The proof of this theorem follows directly from the properties of expectation.

MŪ(1) =
1

n− 1

n−1∑
s=1

MUs(1) = 2γ(1).
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Analogous calculation can be made for the median and trimmed mean.

MŨ(1) = 2γ(1); MT1(α) = 2γ(1), α ∈ [0,
1

2
).

The consistent in sense of a convergence in probability estimators 1-3 for variogram
is proved in [3].

Definition. An estimator Tn−1 is M-estimator, if

inft

n−1∑
s=1

η(Us(1)− t) =
n−1∑
s=1

η(Us(1)− Tn−1),

where η is a real function [3].

Let η′(x) = ψ(x). Then the estimator Tn−1 is a solution of equation

n−1∑
s=1

ψ(Us(1)− Tn−1) = 0.

4. M-estimator Tn.
4.1. The Huber M-estimator, where

ψ(x) = ψ1(x) =

{
x, |x| ≤ k,

sgn(x), |x| > k,

k = 1, 4088;
4.2. The Tukey M-estimator, where

ψ(x) = ψ2(x) =

{
x(r2 − x2)2, |x| ≤ r,

0, |x| > r,

k = 4;
4.3. The Hampel M-estimator, where

ψ(x) = ψ3(x) =


x, 0 ≤ |x| ≤ a,

asgn(x), a < |x| ≤ b,

a r−|x|
r−b

sgn(x), b < |x| ≤ r,
0, |x| > 14,

a = 1, 31, b = 2, 039, r = 14;
4.4. The Andrews M-estimator, where

ψ(x) = ψ4(x) =

{
sin x, |x| ≤ aπ,
0, |x| > aπ,

a = 1, 142;
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3 Distributions.

In order to illustrate the properties of variogram estimators 1-4, consider following
distributions.

A. Standard normal N(0, 1);
B. N(0, 1) 5 per cent contaminated with N(0, 9):

0, 95N(0, 1) + 0, 05N(0, 9);

C. N(0, 1) 10 per cent contaminated with N(0, 9):

0, 9N(0, 1) + 0, 1N(0, 9);

D. N(0, 1) 25 per cent contaminated with N(0, 9):

0, 75N(0, 1) + 0, 25N(0, 9);

E. N(0, 1) 5 per cent contaminated with N(0, 100):

0, 95N(0, 1) + 0, 05N(0, 100);

F. Standard Laplace distribution with a density

f(x) = 0, 5e−|x|;

G. Distribution with the density

f(x) =
1

π(1 + x2)
.

Letting Φ(u) denote the cumulative distribution function of the standard normal
distribution N (0, 1), the cumulative distribution function of a contaminated normal
is defined by

F (u) = εΦ(u) + (1− ε)Φ(u/3),

where ε = 0, 95, ε = 0, 9 and ε = 0, 75 in the case B-D, respectively, and

F (u) = εΦ(u) + (1− ε)Φ(u/10),

ε = 0, 95 in the case E.
Using the procedure discussed in Huber [3], the variances of variogram estimators

1-4 for different distributions A - G may be computed. A program was developed
in such computer algebra system as Mathematica. The values obtained from the
program were listed in Table 1.
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Table 1: The variances of 10 variogram estimators for 7 different distributions
A B C D E F G

1 1,0000 1,4000 1,8000 3,0000 5,9500 2,0000 ∞
2 1,5708 1,6810 1,8032 2,2620 1,7223 1,0000 2,4674
3.1 1,0003 1,3739 1,7749 2,9791 5,6217 1,9791 304,69
3.2 1,0263 1,1554 1,3173 2,1378 1,2462 1,6537 6,8470
3.3 1,0604 1,1688 1,2964 1,8490 1,2276 1,4941 3,8658
3.4 1,1952 1,2892 1,3949 1,8039 1,3285 1,2274 2,2732
4.1 1,0657 1,1649 1,2968 1,7877 1,2273 1,4406 2,9033
4.2 1,0989 1,1978 1,3107 1,7645 1,1780 1,4077 2,2593
4.3 1,0966 1,1954 1,3080 1,7603 1,1757 1,4558 2,3000
4.4 1,0998 1,1991 1,3125 1,7687 1,1789 1,4133 2,2687

4 Results.

The variances of 10 estimates of 2γ(1) for 7 different distributions are given in Table
1. We see that the mean is by far the most stable for the normal distribution, and by
far the least stable in almost all of the heavy-tailed runs. All of the trimmed means
were dominated by M-estimators only in case A. The estimators having consistently
the smallest variances in the nonnormal cases are the M-estimators. Except for the
contaminated case D. The median performs poorly.

Thus the M-estimators are the estimators of choice, having quite good efficiency
for normal data coupled with stability for all the heavy-tailed distributions studied.
The trimmed means and the median do not perform well.
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