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Abstract 

 

The analysis of the forward rate curve for enough wide class of one factor 
affine models of the term structure that includes not only Vasiček’s Gaussian 
model and the square root model CIR but also models with any levels of the 
lower boundary of the short term (riskfree) interest rates is resulted. The multi-
factor Gaussian model is discussed in details too. The special attention is given 
to the problem connected with the tendency for the term structure of long term 
forward rates to slope downwards.   

For one-factor models with stochastic volatility the following results are de-
rived: the probability that the forward rate curve slopes downwards for long 
term yield rates is found and is shown that this probability is influenced essen-
tially not only by interest rate volatility but also by level of the lower boundary 
of short term rates and parameters of the risk premium; the expectations, vari-
ances and covariances for the forward rates and the yield process volatility are 
calculated; the correlation between the forward rates and the yield process vola-
tility is always positive and does not depend on term to maturity; its lower 
boundary is found; the average slope of the forward rate curves is negative for 
all terms to maturity. 

For one factor models with deterministic volatility (Gaussian models) the 
probability that the forward rate curve slopes downwards for long term yield 
rates is found; this probability always increases as the term to maturity increases 
but has the upper boundary that is dependent on the interest rate volatility; in the 
mean the slope of the forward rate curve is too negative independent on term to 
maturity. 

For multifactor Gaussian models the representation of state variable process 
in the explicit form is derived and its covariance matrix is found; the probability 
that the forward rate curve slopes downwards is found also. 

 
Keywords: forward rate curve, volatility of zero coupon yield, affine model, 

Vasiček’s Gaussian model, square root model CIR, term structure of long-term 
forward rates. 
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 Introduction 

 
One of classical problems of financial economics is the analysis of behav-

iour of the yield on default free bonds depending on their maturities. At the cer-
tain assumptions it is possible to use mathematical model of available yield 
curve to extrapolate it to obtain the future values of yield rates. The forward 
rates can be obtained on the basis of knowledge of time structure of discount 
bonds (see details in Hull (1993)). 

The forward rate term structure was investigated in a number of references 
from which we shall mention only a few. D. Heath, R. Jarrow, and A. Morton 
(1992) have developed the methodology for obtaining of stochastic processes of 
subsequent movements of forward rate curve. Brown and Schaefer (1994) have 
derived a forward rate curve for affine models of term structure. Kortanek and 
Medvedev (2001) have offered a minimax way of modelling forward curve on 
the basis of the observation of yield. Medvedev (2003) has presented the com-
parative analysis of yield curves and forward rate curves. 

At the same time the area of term structure for long-term forward rates was 
not subject to detailed research as for short-term interest rates. Brown and 
Schaefer (2000) have discovered that the new information about the yield term 
structure can be received from the analysis of the long-term end of the forward 
rate curve. They have noted that the empirical data show that the forward rate 
curve for long term maturity is usually sloped downwards. Discussion of two 
factor Gaussian affine model of term structure at the certain assumptions has al-
lowed to draw an inference that the slope of the forward rate curve on the long-
term end always should be negative and this effect is connected to properties 
volatility of long term zero coupon yield. Moreover that is possible to predict 
volatility of long-term yield by observation a slope of the forward rate curves. 
This problem was empirically investigated Christiansen (2001), which provides 
cautious support to results of Brown and Schaefer (2000). 

In the present paper the analysis of the forward rate curve is made for wider 
class of affine one factor models of the term structure including not only Va-
siček’s Gaussian model (1977) and the square root model CIR (1985) but also 
the models generated by the short term (riskfree) interest rates with the various 
levels of the lower boundary [see Ilieva (2000, 2001) or Medvedev (2003)]. The 
multifactor Gaussian model is discussed in details too. 

 
Properties of forward rate curves for affine models  

of term structure 
 

The affine models of term structure occur when the short term (riskless) in-
terest rate r(t) follows the stochastic process described by the stochastic differ-
ential equation 
  



dr(t) =  k (θ −  r(t)) dt + 
x
xtrkD

−θ
−)(2 dW(t),   r(0) > х.                  (1) 

Here dW(t) are the increments of the standard Brownian motions and the 
parameters of equation (1) have the following concrete practical sense: θ is sta-
tionary expectation of the short term interest rate r(t); D is its stationary vari-
ance; х is the parameter that has sense of lower reflecting boundary of process 
r(t): r(t) ≥ х  for every t (according to Feller (1951) this boundary is unattainable 
if (θ – x)2 > D); k > 0 is the parameter that determines a velocity of transition of 
process (1) into stationary mode; there is another interpretation of the parameter 
k: it determines an autocorrelation coefficient of process (1) in a form  

ρ(τ) = E[(r(t) – θ)(r(t + s) – θ)]/D = exp{– k|s|}. 
Let in the market the non arbitrage conditions are satisfied at the short term 

interest rates described by the equation (1). Then a market price of risk λ(r) is 
defined by expression [see Ilieva (2001)]: 

λ(r) = − 
x
xr

−θ
−

λ ,                                               (2) 

where the parameter λ determines a value of risk premium, λ ≥ 0. 
The parameters k, x, θ and D of equation (1) are constant therefore the 

process r(t) is homogenous in the time. At the current time t, when r(t) = r, the 
price P(r, t, Т) of zero coupon bond, on which at date maturity Т the one money 
unit is paid, is determined by relation  

P(r, t, Т) = exp{A(Т − t) − rВ(Т − t)}.                             (3) 
Further for brevity a term to maturity of the zero coupon bond we shall des-

ignate τ ≡ Т − t. Models of the interest rates that allow to express the price of 
bond P(r, t, Т) as (3) form a class of affine term structures of interest rates. 
Functions of term structures A(τ) and В(τ) satisfy to the equations 
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Solutions of these equations are expressed as 
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Note that v + V = ε, vV = kD/(θ − x). 
Properties of functions of affine term structure A(τ) and В(τ) that are de-

termined by formulae (6) – (7) are in detail investigated in Ilieva (2000).  
The forward rate f(t, Т, T′) determines the bond yield between dates Т and 

T′ such that t < Т < T′ on the base of information about yield that is available at 
time t:  
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where τ′ = Т′ − t. As Т′ → Т, i.e. τ′ → τ, the forward rate (9) turn into the so-
called instantaneous forward rate 
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which is used more often as it is connected by enough simple relations with 
bond yield to maturity у(t, Т) = у(τ)  
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Therefore more often a word-combination «the forward rate» means the instan-
taneous forward rate. 

For the term structure models of the affine yield class Brown and Schaefer 
(1994) have offered to consider a forward rate curve of f(τ) as the complicated 
function that depends on term to maturity τ only through the function of affine 
structure В(τ), i.e.  f(τ) ≡ F(В(τ)). First, it is convenient because an interval of 
possible values of function В(τ) is finite according to (6). In this connection the 
properties of functions F(В) can be illustrated visually by plots on the whole of 
interval (0, ∞) possible values of terms to maturity τ. Second, as it was men-
tioned in CIR (1979) it is possible to consider the function В(τ) as a measure of 
a duration because by analogy with the standard duration of the bond price with 
respect to the interest rates (in this case with respect to short term rates) this 
function is determined by the formula B(τ) = − [∂P/∂r]/P. 
  



It is obtained from expression (4), (5) and (10) that 
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eneral properties of the forward rate curves f(τ) are presented in Med-
3). Here we shall consider in more detail behavior of a forward curve v

he long terms to maturity τ. 
From expression (10) it follows that  
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From the relations (4) − (7) it is possible to find that 
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From (6 → V −1. Hence for ) it follows that as τ → ∞ the function B(τ) f(τ) and  
 there are t e li τ → ∞ h mit relations as ττ ddf )(
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It means that if the terms to maturity in e the
a constant, which takes values from an interval [х, θ] since by definition 

 

creas n the forward rates tend to 

.1≤V  
It is interesting to explain under what conditions the forward rate curve 

0 < k

slopes downwards (i.e. has negative derivative) at long term to maturity. As it 
follows from representation (13) the derivative ττ ddf )(  is expressed in the 
form of product of three factors, two of which (the second and the third) are not 
negative by the definition. Therefore the forward rate curve slopes downwards if 
the following inequality is valid 

 

  



k(θ − x) − [v + V − 2v(1 − VB(τ))](r − x) < 0, 
 

that it is more convenient to write 
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Because the function B(τ) increases monotonous
at τ = 0 up to the value B(∞) = V −1 at τ = ∞, hence the right part of the inequal-
ity (

ly from the value B(0) = 0 

15) is monotonously decreasing function τ from value k/(V − v) at τ = 0 up 
to k/(V + v) at τ = ∞. 

Thus the forward rate curve slopes downwards for any τ if 

,
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and can have the negative slope for the some enough long maturities τ > τ0(r) if 
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Here it is designated by τ0( ) such value τ, at which
equality. 

−
r  the inequality (15) turns into 

Using formulae (8) it is possible to write inequalities (15) – (17) in the ex-
plicit form through parameters of model (1). 

Let's remind that by definition r = r(t) is a value of process of the short term 
rate at time t. Hence this value can be considered as random variable. It is 
known also [Ilieva (2000)] that process r(t) that is determined by the equation 
(1) under the conditions accepted above has the shifted gamma distribution with 
the following parameters: parameter of shift х, parameter of scale D/(θ − x) and 
parameter of the form (θ − x)2/D.  

The probability density function of this random variable r is 
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Let's remind that the inequality (θ – x)2 > D takes place according to 
Feller’s condition for unattainability of the lower boundary of the short term rate 
proc 2
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ess r(t) accepted above. Therefore the parameter of the form (θ − x) /D > 1. 
It is more convenient to deal not with the random variable r but with its af-

fine transformation z = (r − x)/(θ − x).  The random variable z has the ordinary 
gamma distribution with parameter of the form (θ − x)2/D and parameter of scale

  



D/(θ − x)2. Let's designate the gamma distribution function with parameter of the 
form α and parameter of scale β through G(r | α, β). Then the probability PSD, 
that it is existing τ0(r) < ∞ such that for enough long terms to maturity τ > τ0(r) 
the forward interest rates will slope downwards, is equal to probability of ful-
fillment of inequalities (16) or (17), i.e. 

 

PSD = 1 – .,)( 2
⎟
⎞

⎜
⎜
⎝

⎛ −θ
+

Dx
Vv

kG                            (19) 
)( 2 ⎟

⎠−θ xD
 

Thus, PSD dep ly from parameters k, x, θ 
but also on a parameter of a market price of risk λ through values
the formula (8)). Figure 1 presents PSD as function of arguments х and λ for 
valu

 

ends not on and D of process (1) 
 v and V (see 

es of parameters k = 0,2339, θ = 0,0808 and D = 0,00126 corresponding to 
the empirical estimations received in CKLS (1992) at analysis of the annualized 
one-month U.S. Treasury bill yield from June 1964 to December 1989 (306 
observations). Figure 2 presents PSD as function arguments х and D for values 
of parameters k = 0,892, θ = 0,0905 and λ = 0,0789 according to the empirical 
estimations received in Aït-Sahalia (1996) at analysis the 7-day Eurodollar 

downwards as function of the lower boundary х of process of the short term rate at various 
values of parameter λ market price of risk. 
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Fig. 1. Probability PSD that for enough long maturities the forward rate curve will slope 

  



Fig. 2. Probability PSD that for enough long terms to maturity the forward rate curve will 
slope downwards as function of the lower boundary х of process of the short term

ous values of stationary variance D of the short term interest rate. 
 rate at vari-

sp t 
 

parameters g

ot rate, daily from 1 Jun 1973 to 25 Feb 1995 (5505 observations). Note tha
according to the Feller’s condition of unattainability of lower boundary for set of

iven on figure 2 the variance D cannot be more 0,008. 
From these figures it follows that probability PSD is more sensitive to pa-

rameter λ market price of risk than to stationary variance D of the short-term in-
terest rate, i.e. to volatility of yield process that is directly proportional .D  

The probability PSD that the forward rate curve slopes downwards at some 
maturity τ is determined as the probability that the inequality (15) is held. Tables 
1 and 2 present the estimates of parameters that influence on this prob tyabili  for 
som

rmula (13) for a derivative of forward rate curve can be pre-
sente

e real data. The parameter v for these real data is very close to zero and this 
fact practically exclude a dependence on time to maturity τ for probability at 
these data. The values of probabilities PSD are shown in the Table 2. They are 
not exceeded 0,5. 

In conclusion of this section we note that from representation (6) it follows 
that for the long terms to maturities VB(τ) ≈ 1 − ε е−ετ/V. Therefore for the long 
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Forward rates and yield volatility 

The term structur ed by equation (12). 
In this expression as already it has above been told the only variable can be con-
sider

у

 
e of forward rates f(τ) ≡ f(τ|r) is defin

ed as random. It is r – a value of riskfree interest rate at present time t. Ac-
cording to (3) by the same reason the yield to maturity is also a random variable 
and its volatility σу(τ|r)  differs from volatility of short term rates only by multi-
plier B(τ)/τ, i.e. 
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where by symbo ) the gamma function is designated. It
properties of gamma functions that the function Q(и) = 

l Г (.  follows from the 
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that is set by formula (26), is determined only for positive values of argument 
and monotonously increases. Furthermore Q(и) 24/11 u+
cause it is assumed that the Feller’s condition for unattainability of the lower 
boundary by the riskfree rate process  r(t) is fulfilled then this is equivalent to 
inequality  и = (θ − x)

 → 1 as и → ∞. Be-

2/D > 1. The calculation show that for и > 1 there is ful-
filled Q(и) > 0,8, i.e. .3/4)]([1)( 2 >− uQuQ  

Covariance of the forward rate f(τ|r) and volatility σ (τ|r) is expressed by 
the formula 
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Cov[f(τ|r), σу(τ|r)] = [(1 − VB(τ))(1 + vB(τ))]
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So the correlation of the forward rate f(τ|r) and the volatility yield process 
σу(τ|r) is always positive and their correlation coefficient can
(2/3)D/(θ − x)2. 

τ
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In addition it is interesting to note that in spite of the fact that expectations 
and variances of the forward rate f(τ|r) and the volatility yield process σy(τ|r) 
depend on the term to maturity  the correlation between these functions does 
not depend on τ and is the same for all maturities and monotonously decreases 
with growth of value и = (θ − x)2/D. For example, as u increases from 1 up to 20 
the correlation coefficient ρ decreases from 0,9565 up to 0,2229. 

For affine Gaussian model of term structure, i.e. Vasiček’s model, the lower 
boundary of the riskfree rates х = − ∞. Therefore for this model u → ∞ and then 
Q(и) → 1. Estimate the correlation coefficient for this case. At gre   

ptotic representations of gamma function it is possible to use the Stirling’s 
formula  
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Use of this extension in the formula (28) results in expression for great val-
ues of argument u = ( D: θ − x)2/
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Thus, as х → − e correlation coefficient ρ → 0. It i a natural result (in 
Vasiček’s model the volatility is deterministic) as in Gaussian models of term 
structure the correlation of the forward rate f(τ|r) and the yield process volatility 
σ τ

ical data are given for the CIR model parameters that is esti-
mate

 ∞ th s 

y( |r) is absent. 
For model of the term structure generated by riskfree rate process r(t) «with 

a square root», i.e. the CIR models, the lower boundary of riskfree rates х = 0. In 
table 1 the empir

d by different authors and corresponding values of the correlation coeffi-
cient ρ are given too. In this table by the symbol σ is designated the volatility 
parameter of the short term interest rate for standard representation of CIR 
model for process r(t)  

dr(t) =  k (θ −  r(t)) dt + σ )(tr dW(t). 
 
 

  



Table 1 
Correlation betw

for some empirical data fitted by model CIR 
 

Data source k θ σ D и 

een the forward rate and volatility 

ρ 
CKLS (1992 778 0,4345) 0,2339 0,0808 0,0854 0,00126 5,1
Sun (1992) 8,0496 0,34981,1570 0,0520 0,1223 0,00034
Gibbons &  (1993), I 1,0358 0,0154 0,4900 0,00015 1,5945 0,7673 Ramaswamy
Gibbons & Ramaswamy (1993), II 1,2040 0,0264 0,5459 0,00027 2,5600 0,6118
Pearson & Sun (1994) 0,8762 0,0311 0,1707 0,00052 1,8704 0,7111
Ait-Sahalia (1996) 0,8922 0,0905 0,1809 0,00166 4,9320 0,4450
Duffie & Singleton (1997), I 0,5440 0,3740 0,0230 0,00018 769,21 0,0008
Duffie & Singleton (1997), II 0,0030 0,2580 0,0190 0,01552 4,2881 0,4764
Bali (1999) 0,0317 0,0642 0,0265 0,00071 5,8147 0,4105

CKLS onth ecem-
ber 19 992) prices 
from Nove ons
from 1964 to 1989 on U.S. Treasury bill r

rate 

two first moments of a derivative of the 
forw

 (1992): the annualized one-m  U.S. Treasury bill yield from June 1964 to D
89 (306 observations); Sun (1

ber 1986; Gibb
: 182 monthly observations of U.S. Treasury 

mber 1971 to Decem  & Ramaswam
Gibbon

y (1993), I: m
aswam

onthly data 
), II: monthly eturns; s & Ram y (1993

data from 1976 to 1989 on U.S. Treasury bill returns; Pearson and Sun (1994): 181 monthly 
prices of ten U.S. Treasury bills, notes and bonds from Dec 1971 to Dec 1986 (equally 
weighted bond portfolios); Ait-Sahalia (1996): the 7-day Eurodollar deposit spot rate, daily 
from 1 Jun 1973 to 25 Feb 1995 (5505 observations); Duffie & Singleton (1997), I: weekly 
data from 4 January 1988 to 28 October 1994 U.S. Treasury bond (zero prices); Duffie & 
Singleton (1997), II: weekly data from 4 January 1988 to 28 October 1994 U.S. Treasury 
bond (yields); Bali (1999): annualized one-month U.S. Treasury bill yield from June 1964 to 
December 1996 (390 observations). 

In Brown and Schaefer (2000) it is offered to use a slope of forward rate 
curve to predict the volatility of long term yield rates. As a result of the analysis 
of forward rate spread there it is found that for real parameters of the interest 

model the forward rate spread is linearly connected with (local) variance of 
yield per time unit, i.e. the square of the yield process volatility. We shall con-
sider this problem for examined model. 

The slope of the forward rate curve is characterized by derivative (13) of 
forward curve with respect to term to maturity. Because in expression (13) the 
value r = r(t) is a random variable then 

ard curve will be calculated by formulae 
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he covariance of the forward curve derivative 
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and the yield variance is de-
termined by the formula 
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From here it follow
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s that the correlation coefficient of the forward curve 
derivative and the yield variance for all maturities τ is equal to the minus unit: 

ρ = .1
], 2σ

][Var][Var 2στ yddf

It means that these characteristics are linearly connected between them
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-
selves. Actually this fact is easy to set. If from formulae (13) and (21) to express 
value (r − х) and to equate the obtained results then we o
lation that is valid with probability 1 for any τ: 

btain the following re-

2
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Thus on the basis of the above analysis it is possible to draw the following 
conclusions: 

− pectation of the derivative of forward rate curve with res
term to maturity (29) is negative. It means, that in mean the slope of forward 
rate 

erivative of the forward rate curve with probability unit is con-
necte

curve derivative and variance 
of yi

erally speaking, the formula (33) can be considered as a basis for de-
term t

 the ex pect to 

curve is negative for any terms to maturity τ; 
− the d
d with (local) variance of yield by affine relation (33) for any terms to ma-

turity τ; 
− the correlation coefficient of the forward 
eld (32) for all terms to maturity τ is equal to the minus unit at any values of 

the parameters having real economic sense. 
Gen
ina ion of the local variance of yield 2

yσ (τ|r) by the forward curve deriva-
tive ττ drdf )|(  if this derivative can be estimated. Let's consider such opportu-
nity. For convenience of reasoning it is convenient to present the formula (33) as 
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as representation B(τ) = τ + О(τ ). Therefore for 
small τ the formula (33) can be written as 
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) ≈ 1 − ε е−ετ/V  and the formula (34) 
can be approximately written as: 
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At long τ there is representation VB(τ
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Thus as it follows from repr

⎞
⎜⎜
⎛ τ

−−θ
ετ rdfeVxkv                     (36) 

esentation (20) at long τ the derivative of for-
ward rate curve exponentially decreases as τ increases, and the coefficient be-
fore a derivative in the a (36) exponentially increases. It
small errors in estimation of the derivative of forward rate curve can be in-
crea

 formul  means that even 

sed "exponentially" and the calculation of 2
yσ (τ|r) by formula (34) can have 

the big errors. 
For the real empirical data that presented in Table 1 the values of parame-

ters are such that V ≈ ε, and parameter v is very small. In that case the formula 
(36) can be rewritten as 
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where ϕ = 2v/ε

)|( ⎞⎛ τϕ ετ rdf

 k(θ − х). In Table 2 values of these coefficients are pre-
sented. We shall remind that empirical data of Tables 1 concern to approxima-
tion of the real data in a case when the short term rates 
model, i.e.  х = 0. 

 

2 and ψ =

are generated by the CIR 

  



Table 2 
Probability PSD and coefficients ϕ  and ψ of formula (37)  

for some empirical data fitting by the CIR model  
 

Data source ε v V PSD  ϕ ψ 
CKLS (1992) 0,23390 1,261E-06 0,23390 0,442  4,609E-05 0,0189
Su 4 602

Gibbons & Ramasw 2,769E-07 0,0160
Gibbons & Ra 2,721E-07 1,20451 0,417 

Pearson & S
Ait-Sahalia (1996) 

n (1992) 1,15700 3,363E-07 1,15700 0,453  5,02 E-07 0,0
amy (1993), I 1,03620 1,487E-07 1,03620 0,395  

maswamy (1993), II 1,20451  3,751E-07 0,0318
un (1994) 0,87639 5,17E-07 0,87633 0,403 

 
 1,347E-06 0,0273

0,89219 1,660E-06 0,89219 0,440 
 
4,172E-06 0,0807

Duffie & Singleton (1997), I 0,54400 1,818E-07 0,54400 0,500 
 
1,228E-06 0,2035

Duffie & Singleton (1997), II 0,00303 1,544E-05
7,088E-07

0,00302 0,445 
 

3,36133 0,0008
Bali (1999) 0,03170 0,03170 0,445 1,411E-03 0,0020
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use he -
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ith the help (12) it is possible to express as

e analysis shows  instead of derivat ve of the forward rate curve to
 the forward rate spread t n results will be very similar insignificantly dif
ng in details. Really let τ2  τ + δ, τ1 = τ − δ. We shall introduce designations

 B(τ2) − B(τ  δ) ≡ B τ2) + B(τ1). Then he forward rate spread
w

∆f(τ, δ) ≡ f(τ2|r) − f(τ1|r) = 

= ⎢⎣
⎡

−θ
−

λ−−θ
x
xrkDrk 2)(  − kD ⎥⎦

⎤δτ∇
−θ
− ),(B

x
xr

∆В(τ, δ).            (38) 

2Now using that τ|ryσ ( ) = 
x

kD
−θ

⎟
⎠

⎜
⎝ τ

2  it isxr −  possible to write the rela-

tion which with probability unit con e spread ∆f(τ
variance of the yield per time unit τ): 

δ) =

B ⎞⎛ τ)( 2

nects th , δ) with the (local) 
2
yσ (

∆f(τ,  )( xk −θ ∆В(τ, δ) − 

− )(),(
)(

)],(2)([ 2 τσ
δτ∆

⎟⎟
⎞

⎜⎜
⎛

τ
τ

δτ∇+λ+−θ ykD
B

B
BkDkDxk .          (39) 

2

2

⎠⎝
Thus between the spread ) and the variance of the yield per time unit 

τ) there is nondegenerated linear connection and hence their correlation co-
efficient is equal to minus unit as well as in (32). Again as well as
express from the relation (39) the local variance of yield per time unit τ) 
throu
for

∆f(τ, δ
2
yσ (

 in (34) we 
2
yσ (

gh the spread ∆f (τ, δ) and estimate the coefficients in a formula obtained 
 the long terms to maturity. 
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Let's name the term to maturity τ as long if it is possible to neglect the 
terms of the order O(е−ετ) in comparison with unit. In this case as well as
pression (36) it is possible the representation VB(τ) ≈ 1 − ε е−ετ/V. Therefo
poss −ετ 2

 in ex-
re it is 

ible to write that ∇B(τ, δ) ≈ 2/V and also ∆B(τ, δ) ≈ εе d(ε, δ)/V  where 
d(ε, δ) = (еεδ − е−εδ). Then for representation 2

yσ (τ) it is possible to use the for-
mula similar (34) again.  
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Hence at long terms to maturity the order of smallness of coefficients ξ(τ) 
and ζ(τ) for any finite values τ2 − τ1 = 2δ remains the same, as w
when instead of spread the derivative of the forward curve is use
remarks concerning the error of calculat

22

ell as in a case 
d. Therefore all 

ions of the local variance of yield per 
time unit 2

yσ (τ) through a derivative of forward rate curve (see formula (36)) are 
valid for spread ∆f (τ, δ) too. At last at small δ we have that d(ε, δ) ≈ 2δε. There-
fore as δ → 0 formula (40) will turn to the formula (36).  

In conclusion note that the problem of the prediction of the volatility of 
long term yield through the slope of the forward rate curve was investigated by 
Brown and Schaefer (2000) for two factor affine Gaussian models of term struc-
ture. In particular they deduced the relation ∆f (τ1, τ2) ≈ − 0,5 )( 12 τ−τσ y . This 
relation has been obtained in the assumption that value k (θ − х) (in our designa-
tions) is enough small and the first term in brackets in formula (41) could be ne-
glected. In our case not Gaussian models if to neglect this factor then the follow-
ing formula is obtained  

∆f(τ

2

1, τ2) ≡ ∆f(τ, δ) ≈ ).()(
2

),( 22 τσετ
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− ετ−
ye

vV
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Difference will be in that the coefficient of proportionality between the 
spread ∆f(τ1, τ2) and τ) is equal to not τ2 but (ετ 2 −ετ

appears still an exponential reduction of the coefficient of proportionality. 

pp

 the local variance ) е , i.e. 2
yσ (

Consider an error of such approximation. The forward rate spread is deter-
mined by equation (39) as the sum of two terms first of which is deterministic 
and the second term is stochastic. The a roximation (43) is reduced to that the 

  



first term is rejected and as the forward rate spread is accepted the second term. 
Practically it means that approximation (43) simply changes the expectation of 
the forward rate spread by value of the first term in (39) at long rates. The ex-
pectation of the forward rate spread according to formulae (31) and (39) is 

Е[∆f(τ, δ)] = )( xk −θ ∆В(τ, δ) −  

− ),())]()((2)([ 21 δτ∆τ+τ+λ+−θ BBBkDkDxk . 
At approximation (43) this expectation is changed by value of the first term. 

For the zero risk premium (λ = 0) expression for the expectation can be written 
in the form 

Е

l 

χ 

[∆f(τ, δ)] =  k(θ − x)∆В(τ, δ) − k(θ − x)[1 + vV(B(τ1) + B(τ2))/k]∆В(τ, δ). 
Hence it follows that the relation of the first term to the second on absolute 

value is equa

= ),()( δτ∆−θ Bxk
),(]/))()((1)[( 21 δτ∆τ+τ+−θ BkBBvVxk

 = 
kBBvV /))()((1 21 τ+τ+

. 1

From properties of function В(τ) we have that it monotonously increases 
fro  at τ = 0 up to 1/V at τ = ∞. Therefore the relation χ monotonously de-
creases from 1 at τ = 0 up to value [1/(1 +2v/k)] at τ = ∞. By definition v < k, 
there

 that Brown and Schaefer (2000) have considered a 
two-factor time homogeneous odel of the term structure. In 
Christiansen (2001) the problem of ad odel of term 
struc

e interest rate tends to the minus infinity. So ana-
lytic

m 0

fore for any terms to maturity τ the inequality is realized χ > 1/3. As it is 
seen from Table 2 for real cases the parameter v is close to zero. It means that in 
real models χ ≈ 1. Therefore approximation (43) can be considered satisfactory 
only when the first term in (39) close to zero because in this case the change of 
Е[∆f(τ, δ)] is not essential. 

Gaussian model 
 

It has been told above
affine Gaussian m

equacy of the Gaussian m
ture was examined in the area of long-term maturities. The Gaussian mod-

els are differed from considered above by assumption that the volatility of the 
riskfree interest rates is deterministic and the correlation relation (32) is not 
valid for Gaussian model. Therefore there is a sense to consider separately a 
problem of connection between properties of the forward rate curves and the 
yield volatilities in this case. 

The affine Gaussian model is obtained when the riskfree interest rates are 
generated by the Vasiček model that is a special case of model (1)  at х → − ∞, 
i.e. the lower boundary of th

al results for Gaussian model can be received by corresponding limiting 
transition. In particular from formulae (6) – (8) it follows that as х → − ∞ the 
key parameters take values: v = 0, V = ε = k, and the function of term structure 
B(τ) = (1 −  е−kτ)/k. 
  



The local variance of yield process per time unit (the square of yield volatil-
ity) is deterministic and is expressed by the formula 2

yσ (τ) = ( ) .)( 2 DB ττ  
The forw rd rata es curve has form 

f(τ|r) = r + ]2)([ kDrk λ−−θ B(τ) − DB(τ)2 = k

,22 τστ−τλτσ yy  
its derivative with respect to τ that determines a
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 (θ −  r(t)) dt +

riskfree rate process r(t) 
 kD dWdr(t) =  k 2 (t) 

tionary normal distribution of probabilities 
ce D. 

Therefore probab rve at maturity term 

is the Gaussian process and has a sta
with expectation θ and varian

ility PSD(τ) of that the forward rate cu
τ slopes downwards is equal       

PSD(τ) = Pr )}(2/2{ −λ−θ> kr τBD  = Φ( )),(2/2 τ+λ BDk       (44) 

nously inc τ) increases with τ too, PSD(τ) takes the 
value

where Ф is the standard normal distribution function. Because B(τ) is monoto-
reasing function then PSD(

 Φ( )/2 kλ ximal  at  τ = 0 and reaches the ma value  Φ( )/ kD  2/2 k +λ

able 3 th odels are submit-

in the assumption that λ = 0 (in this case 
mini

at τ = ∞. Note that this maximum depends essentially on parameter k and in-
creases as this parameter decreases.  

In T e estimations of parameters of the Vasiček m
ted that are obtained by different authors for the corresponding real data and the 
maximal values of probability PSD 

mal PSD = 0,5 at τ = 0 for all variants). In this table a symbol σ is the vola-
tility parameter of the short term interest rate in standard representation of Va-
siček model for process r(t), i.e. kD2=σ . 

Table 3 
Estimations of Vasiček model parameters 

Data source k θ σ D max PSD 
CKLS (1992) 0,1779 0,0866 0,0200 0,001124 0,6469 
Ait-Sahali 0,5331 a (1996) 0,8584 0,0891 0,0467 0,001270
Bali (1999) 0,0436 0,0642 0,0077 0,000680 0,8842 
Ait-Sahalia (1999) 0,2610 0,0717 0,0224 0,000961 0,5939 

  



CKLS (1992): ed one U l m 64 to Decem-
ber 1989 (306 observations). Ait-S h r d pot rate, daily 

 that are calculated for data of Tables 3 in the assumption that λ = 0. 

 the annualiz -month .S. Treasury bi l yield fro  June 19
ahalia (1996): t e 7-day Eurodolla eposit s

from 1 Jun 1973 to 25 Feb 1995 (5505 observations). Bali (1999): annualized one-month 
U.S. Treasury bill yield from June 1964 to December 1996 (390 observations). Ait-Sahalia 
(1999): the Federal Reserve System funds data monthly from January 1963 to December 
1998. 

Figure 3 shows the plots of probability PSD as the function of maturity 
term τ

The expectation of forward rates 
τ = θ − λE[f( |r)]    kD2 B(τ) − kDB(τ)2. 

The variance of forward rates 
Var[f  D е(τ|r)] =

 

As th  models 
is equal D  = B tation of forward 

− 2kτ. 
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Fig. 3. Probability PSD that the forward rate curve slopes downwards as 
a function of maturity term τ for data of Table 3. 

e variance of the yield to maturity for the affine term structure
(τ))(2 τy

rates and the yield variance be presented as follows 
E[f(τ|r)] = θ − λ

2D/τ2  then the relation between expec

τ )(τyD − k τ2 )(2 τD . k2 y

The average slope of the forward rate curves (expectation of a derivative) 
and variance of the derivative 
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The spread of forward rates for τ2 = τ + δ, τ  τ − δ: 1 =

  



∆f(τ, δ) ≡ f(τ2|r) − f(τ1|r) = kDrk 2)([ λ−−θ  − kD )],( δτ∇B ∆В(τ, δ).  

N ls ∆В(τ, δ) = e kk /)ote that for Gaussian mode ek( keτ− δ δ−− . 
Let now the Gaussian model be characterized by n state variables which 

form

             (45) 
where K is (n×n)-matrix of t

 some moment of time s < t is known such model 
allow

where U(t) is a fundam n

0

 a vector Z = (z1, ..., zn)Т. For n-factor Gaussian model with constant coeffi-
cients the state variables follow the stochastic differential equation  

dZ = K(θ − Z) dt + σ dW(t),                    
he mean reversion coefficients, σ is (n×q)-matrix of 

volatilities, θ is n-vector of stationary expectations of state variables Z and dW is 
q-vector of increments of standard Brownian motions. By classification Dai & 
Singleton (2000) this model belongs to class А0(п) and for the specification in 
the maximal variant it demands to set (n×n)-matrix, (n×q)-matrix and n-vector, 
i.e. n(1 + q + n) parameters. 

If the state of process Z at
s to express a vector of state variables Z(t) in the explicit form as process 

Z(t) = U(t − s)Z(s) + (I − U(t − s))θ + ,)()(∫ σ−
t

udWutU  
s

ental ( ×n)-matrix of solutions of ordinary differential 
equation U′(t) = – KU(t), U(0) = I, I is identity (n×n)-matrix. The stationary re-
gime of such process exists if all eigenvalues of matrix K are negative (in this 
case at t → ∞ matrix U(t) → 0). For a stationary regime (s → − ∞) the expres-
sion for process Z(t) becomes more simple 

Z(t) = θ + )(∫ ,)(
∞

− utdW  

whence follows that the unconditional expectation and the unconditional covari-

0

T

σuU

ance matrix of process Z(t) are calculated by formulae 

Е[Z(t)] = θ,   Cov[Z(t)] = [)( T∫
∞

σσ UuU ,)]( duu                  (46) 

If the eigenvalues of m βi < 0, 1 ≤ i ≤
agon

atrix K are designed as  n, and the di-
al matrix with elements ехр(βi t) on the main diagonal as teβ  then the fun-

damental matrix of solutions U(t) can be presented in the form U  = 1(t) −β MeM t  
where М is a matrix of the eigenvectors of the matrix K. Note that if m  
diagonal with elements k

atrix K is
i > 0 on the main diagonal then М = I, βi = − ki, and U(t) 

is equal to kte− . 
The multifactor model of state variables (45) generates an affine model of 

term
(47) 

 structure, which can be written according to Duffie and Kan (1996) as 
 P(Z, t, τ) = exp[A(τ) − ZTB(τ)],                                  

  



where Z = Z(t) and function A (τ) and vector B (τ) can be determined from the 
following differential equation for price P(Z, t, τ): 
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 are  n-vector row and (n×n)-matrix of 

derivatives of the price with respect to the state variables respectively, r(Z) is the 
riskfree interest rate at the moment of time t, λ − q-vector of risk premium pa-
rameters, and tr(A) is a trace of matrix А. For affine model it is necessary that 
r(Z) was affine function of state parameters, i.e. r(Z) = α + φТZ.  

Under these conditions the functions A(τ) and B(τ) satisfy the ordinary dif-
ferential equations 

A′(τ) = − α − B(τ)Т[Kθ  − σλ] + B(τ)ТσσТB(τ)/2,  A(0) = 0, 
B′(τ) = − K ТB(τ) + φ,   В(0) = 0.                             (49) 

Special interest is represented with functions B(τ) because through them  
the forward rates are expressed. 

The forward rate curve becomes 
f(τ|Z) = r(Z) + ,        (50) 2/)]()([])([)( TTT τσστ−σλ−−θτ BBZKB

and the spread of forward rates for τ2 = τ + δ, τ1 = τ − δ: 
∆f(τ, δ) ≡ f(τ2|Z) − f(τ1|Z) = 

= ∆В(τ, δ)Т[K(θ − Z) − σλ] − ,             (51) 2/)],(),([ TT δτ∇σσδτ∆ BB
As the multifactor model is derived by the vector of the Brownian motions 

the yield process volatility is determined by the vector-row σy(τ) = B(τ)Тσ/τ that 
is not stochastic. For the forward rate it is possible to write the formula through 
the yield process volatility as follows: 

f(τ|Z) = r(Z) + 2)()()()()( T2T τστστ−λτστ−−θτ yyyZKB .      (52) 

The multifactor model of the riskfree interest rate process reflects the real 
dynamics more precisely however it demands to set the greater number of pa-
rameters and the explicit expression for the forward rate, volatility of yield proc-
ess and unconditional variance of yield to maturity have rather bulky form. 
Therefore in order to obtain the foreseeable results we accept some simplifying 
assumptions. 

Note first that as the state variables Z it is necessary to choose only such 
variables, which influence on level of the riskfree interest rate. That is the vector 
φ should have only nonzero components. In this case without breaking a gener-
ality it is possible to represent the riskfree interest rate more simply by equiva-
lent state variable: r(Z) = α + Z~T1 , where 1 is a vector formed by units. Indeed 

  



let Z~ ≡ ΦZ, where Φ is a diagonal matrix the components of main diagonal of 
which are components of vector φ. Then for the vector of state variables Z~  the 
equation of model (45) is rewritten as 

),(~)~~(~~ tdWdtZKZd σ+−θ=                                    (53)                     

where K~ ≡ ΦK Φ−1, θ~  ≡ Φθ, σ~  ≡ Φσ, and W(t) is the same process as in model 
(45). The state variable Z~  have also the useful property that the eigenvalues of a 
matrix K~  are the same, as for K, and if a matrix K is diagonal then K~ = K. Other 
advantages of transition to the state variables Z~  we note later. 

Consider a special case when the matrix K is diagonal. In this case as it has 
above been told the elements of main diagonal are eigenvalues and the funda-
mental matrix of decisions U(t) = kte−  is too diagonal. Let a matrix σσТ has 
elements [σσТ]ij. Then according to representation (46) elements of the covari-
ance matrix of the state variables Z are

[Cov(Z)]ij  = ,
][

][
T

0

)(T

ji

ijukk
ij kk

due ji

+

σσ
=σσ∫

∞ +−   1 ≤ i, j ≤ n,         (54) 

where  ik  ≡  > 0 is element of the main diagonal of a matrix K.  iiK )(
The zero coupon yield y(τ) according to representation (47) is linearly con-

nected to state variables Z by the relation  τ y(τ) = − A(τ) + ZTB(τ). Whence it 
follows that the variance of yield  y(τ) it is calculated by the formula  

Var[у(τ)] = .                             (55) 2T /)]()(Cov)([ τττ BZB
The equation (49) for vector function B(τ) for the examined case breaks up 

to the scalar equations the solutions of that are 
Bi(τ) =  1 ≤ i ≤ n.          ),(/)1( τφ≡−φ τ−

iii
k

i bke i

where  is a component of vector φ. Therefore B(τ) ≡ Φ b(τ) and the vector 
b(τ) meet the equation b′(τ) = − K 

iφ
Т b(τ) + 1,  b(0) = 0, and does not depend on 

φ. So if to pass to the state variables ,~Z  then it is possible to rewrite the formu-
lae (54) and (55) as follows 

у(τ) = [− A(τ) + ZTB(τ)]/τ = [− A(τ) + Z~ Tb(τ)]/τ. 
Var[у(τ)] = = 2T /)]()(Cov)([ ττΦΦτ bZb 2T /)]()~(Cov)([ τττ bZb . 

[Cov( Z~ )]ij  = ,
]~~[

][
T

0

)(T

ji

ijukk
ij kk

due ji

+

σσ
=ΦσσΦ∫

∞ +−   1 ≤ i, j ≤ n,         (56) 

By similar way it is possible to rewrite the formulae (50) and (51) for the 
forward rates and the forward rate spread. 

From equality (50) it is possible to see that the forward rate can be submit-
ted as  

  



f(τ|Z) = r(θ) + φТ(Z − θ) −  = 2/)]()([])([)( TTT τσστ−σλ+θ−τ BBZKB

= r(θ) − B(τ)Tσλ − 2  + [φ/)]()([ TT τσστ BB Т − B(τ)TK](Z − θ), 
where the last term is stochastic and has normal distribution, and the others 
terms are deterministic. Therefore it is possible to write that  

E[f(τ|Z)] = r(θ) − B(τ)Tσλ − , 2/)]()([ TT τσστ BB
Var[f(τ|Z)] = [φТ − B(τ)TK] Cov(Z) [φ − KТB(τ)]. 

Derivative of forward rate curve for multifactor model 

τ
τ
d

Zdf )|(  = − [B(τ)T]′[σλ + , )]()(T θ−+τσσ ZKB

its expectation and variance 

⎥⎦
⎤

⎢⎣
⎡

τ
τ
d

ZdfE )|(  = − [B(τ)T]′[σλ +  = − [b(τ))](T τσσ B T]′[ λσ~  + )](~~ T τσσ b  

⎥⎦
⎤

⎢⎣
⎡

τ
τ
d

Zdf )|(Var  = [B(τ)T]′K Cov(Z) KТ[B(τ)]′ = [b(τ)T]′ [b(τ)]′. T~)~(Cov~ KZK

From these formulae it is possible to see that the average slope of forward 
rate curve will be negative if functions B(τ) and their derivatives positive. Prob-
ability that for some term to maturity τ the slope of forward rate curve will be 
negative is 

PSD(τ) ≡ Pr
⎭
⎬
⎫

⎩
⎨
⎧ <

τ
τ 0)|(
d

Zdf  = Φ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′τ′τ

τσσ+λσ′τ

])([~)~(Cov~])([

)](~~~[])([
TT

TT

bKZKb

bb .

The general analysis of this probability is enough complicated as it depends 
on properties of matrixes and vectors, which determine it. Therefore we shall 
consider a special case when matrix K = (Kij) is diagonal also has positive ele-
ments on the main diagonal, i.e.  ki ≡ Kii > 0. We shall assume also that these 
elements various and are ordered as follows 0 < k1 < k2 < ... < kn. In this case 
b(τ)T =  and matrixes ),...,,,( 21 τ−τ−τ− nkkk eee )~(Cov Z  and T~~σσ  have properties 
(56). Then ijjiij Zkk )]~(Cov)[(]~~[ T +=σσ , 1 ≤ i, j ≤ n. Designate elements of ma-
trixes )~Cov(Z  and σ~  respectively Dij и σij.  Then probability PSD(τ) is pre-
sented as 

PSD(τ) = Φ

⎟
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The analysis of this expression too is complicated therefore we discuss only 
a limiting case τ → ∞, when probability PSD(τ) takes the more simpler expres-
sion 

PSD(∞)  = Φ
⎟
⎟
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⎜
⎜
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111
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jjj . 

Note that the main role in specification of probability plays the least factor of 
matrix K. If n = 1 then there is a unique state variable the riskfree rate and this 
formula turns to the formula (44).  

At the analysis of the forward rate curves for long-term yields Brown and 
Schaefer (2000) have offered approximation of the forward rate spread in this 
area in the form of simple dependence on the zero coupon yield volatility. This 
approximation is obtained if in the formula (51) to neglect the first term.  

In this formula there are two terms, the first from them is stochastic and the 
second is deterministic. So the offered approximation is equivalent to that as the 
forward rate spread its expectation is used.  

∆f(τ, δ) ≡ f(τ2|Z) − f(τ1|Z) ≈ −  = 2/)]()([)]()([ 12
TT

12 τ+τσστ−τ BBBB

= −                      (57) .2/)]()([~~)]()([ 12
TT

12 τ+τσστ−τ bbbb
Then the stochastic component ε = ∆В(τ, δ)Т[K(θ − Z) − σλ] of the forward 

rate spread it is possible to consider as an error of approximation. It has normal 
distribution and the following properties. If the risk premium parameters to ac-
cept equal to zero (λ = 0) the expectation of ε will be equal to zero and its vari-
ance is equal  

Var[ε] =  = )]()(][)(Cov[)]()([ 12
TT

12 τ−ττ−τ BBKZKBB

= .                      (58) )]()()[~(Cov)]()([ 12
T

12 τ′−τ′τ′−τ′ bbZbb
Here the fact is used that according to the equation (49) 

K ТB(τ) = − B′(τ) + φ = − Ф[b′(τ) − 1]. 
Because distribution of ε and its moments are known it is possible to con-

struct confidential intervals and set the accuracy of approximation (57) at the set 
level of trust. Here only one shall note that approximation will be better if a 
standard deviation of ε (i.e. dε  ≡ ]Var[ε ) will be smaller. In particular, if the 
order of smallness of dε will be essentially higher than the order of the smallness 
of ∆f (τ, δ) then approximation can be considered as satisfactory.  

Determine these orders of smallness with respect to k ≡ min{ki, 1 ≤ i ≤ n}. 
Let [ T~~σσ ]ij = О(1), 1 ≤ i, j ≤ n, then we have  

[Cov ( Z~ )]ij = О(1/k),     ibb )]()([ 12 τ+τ  = О(1/k), 

ibb )]()([ 12 τ−τ  = ),( keO kτ−     ibb )]()([ 12 τ′−τ′  =  ).( τ−keO

  



Therefore orders of smallness of forward rate spread ∆f (τ, δ) and errors of 
its approximation dε have orders 

∆f(τ, δ)  = ),( 2keO kτ−       dε  = ).( keO kτ−                   (59) 

So dε  /∆f(τ, δ)  = )( 23kO . For example, at k ≤ 0,2154 the relative error will 
be less than 10 %.   

 
Gaussian model: the empirical analysis 

 
Consider now a problem of determination of forward rates by experimental 

data. We accept as a basis the data resulted by Brown and Schaefer (2000) for 
two-factor Gaussian model. They contain there in Table 1 (Standard Deviation 
of weekly changes (% p.a.) in zero coupon yields derived from US Treasury 
STRIP prices) and in Table А2 (Estimated Mean Reversion Coefficients and 
Correlation Coefficient) for three time periods: 88 – 94, 88 – 91 and 91 – 94. For 
convenience the data on standard deviations of zero coupon yield from Brown 
and Schaefer (2000) are resulted here in Table 4 in columns with indexes YE1, 
YE2, YE3. Estimations of factors  k1, k2 and correlation coefficient ρ of the state 
variables from Brown and Schaefer (2000) are resulted here in Table 5. 

 
Table 4 

Standard deviation of zero coupon yield 
(empirical YE and determined from model YM) 

Period 88 – 94 88 – 91 91 – 94 88 – 94 88 – 91 91 – 94 

Maturity τ 
(years) YE1 YE2 YE3 YM1 YM2 YM3 

2 0,991 1,002 0,927 1,031 1,022 1,006 
3 1,030 1,001 1,015 1,001 0,983 0,986 
5 0,994 0,958 1,012 0,951 0,927 0,949 
7 0,904 0,871 0,932 0,908 0,885 0,913 
10 0,857 0,845 0,878 0,854 0,837 0,863 
15 0,733 0,719 0,755 0,778 0,773 0,786 
20 0,686 0,694 0,684 0,714 0,717 0,719 
25 0,684 0,722 0,649 0,657 0,668 0,659 

 
Table 5 

Estimations of factors k1, k2

and correlation coefficient ρ 
of state variables  

Period 88 – 94 88 – 91 91 – 94 
k1 0,0393 0,0328 0,0417 
k2 0,2060 0,3340 0,1260 
ρ – 0,2540 – 0,1630 – 0,5560 

  



 
In order to write the results in more convenient form present the covariance 

matrix )~(Cov Z  and the vector b(τ) as 

)~(Cov Z =      b(τ) = ,2
221
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Then the zero coupon yield variance according to the formula (56) can be 
presented as 

Var[у(τ)] =  = 2T /)]()~(Cov)([ τττ bZb

= [b1(τ)2D1
2 + b2(τ)2D2

2 + 2 b1(τ)b2(τ)D1D2ρ]/τ2.                   (61) 
Let VЕ(τ) be a variance that is calculated as a square of a standard deviation 

from columns YE of Table 4. Form a square of a difference  
S(τ) = (VЕ(τ) –  [b1(τ)2D1

2 + b2(τ)2D2
2 + 2 b1(τ)b2(τ)D1D2ρ]/τ2)2. 

In this expression the functions b1(τ) and b2(τ) are calculated by the formula 
(60) for coefficients from Table 5, the correlation coefficient ρ is used also from 
Table 5. For one of three periods we form the sum Q of squares S(τ) and mini-
mize it on values D1, D2, i.e. 

Q  = . min)(
21,

25

2
⎯⎯ →⎯τ∑

=τ
DDS

Such procedure of the Least Squares Method (LSM) allow to determine D1, 
D2 and hence the covariance matrix ).~(Cov Z  It is known from the formula (56) 
that  

[Cov( Z~ )]ij  = ,
]~~[ T

ji

ij

kk +

σσ
  1 ≤ i, j ≤ n. 

From here with the help of the data of Table 5 it is possible to determine 
elements of a matrix T~~σσ  and by the formula (57) we can determine the ap-
proximation of forward rate spread.  

Note that such procedure uses a simple LSM to determine the elements of 
the covariance matrix )~(Cov Z . Probably the application of more exact methods 
(for example, the Generalized Method of the Moments) will allow to receive 
more exact results. 

At last we note that the described procedure is based on state variables Z~  
and does not demand an estimation of a vector φ, through which the riskfree in-
terest rate is determined. It is important advantage of such definition of state 
variables at practical calculations.  

In the Table 6 the estimates of elements of the covariance matrix )~(Cov Z  
and size of the squares sum Q corresponding to them are submitted.  

  



Last three columns with indexes YM of Table 4 contain values of standard 
deviations of zero coupon yield that are calculated by the formula (61) with use 
of the data of Table 6. Figure 4 is an illustration of the data of Table 4. 

 
Table 6 

Elements of covariance matrixes (60) 
of state variables  

Period 88 - 94 88 – 91 91 - 94 

D1 1,0650 0,9912 1,0764 
D2 0,6669 0,7430 0,0565 

Q 0,0246 0,0203 0,0486 
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Fig. 4. Standard deviations of zero coupon yields SD(Y) for US Treasury STRIP prices  
of Table 1 from Brown and Schaefer (2000) (YE) and calculated on the basis  

of their data by the formula (61) (YM). 
 

Matrixes )~(Cov Z  and T~~σσ  that are calculated according to formulae (56) 
and the data of Table 6 for the corresponding periods have the forms that are 
presented in Table 7. 

 
 
 
 
 

  



Table 7 
Matrixes )~(Cov Z and ,~~ Tσσ  calculated  

on the basis of the data of table 6 

Period Matrix )~(Cov Z  Matrix T~~σσ  

88 - 94 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
4448,01804,0
1804,01342,1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
1832,00443,0
0443,00892,0

 

88 – 91 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
5522,01201,0
1201,09826,0

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
3689,00440,0
0440,00645,0

 

91 - 94 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
00319,00338,0

0338,01588,1
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
000804,000567,0

00567,0096643,0
 

The Figure 5 shows the probabilities PSD(τ) for two factor models with 
parameters from Tables 5 and 7 if the risk premium parameters λ are zero. 

The approximation of the forward rate spread calculated by the formula 
(57) for τ2 = 25, τ1 = 15 and its absolute (see the formula (58)) and relative er-
rors are submitted in Table 8. From this table it follows, that the approximation 
offered by Brown and Schaefer (2000) for data of Tables 4 and 5 is valid with 
accuracy about 4 %. 
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Fig. 5. The probabilities PSD(τ) for the two factor Gaussian models  
for data from Brown & Schaefer (2000). The plots according to  

the periods 88 – 94 (P1), 88 – 91 (P2) and 91 – 94 (P3). 

  



Table 8 
Approximation of forward rate spread for τ2 = 25, τ1 = 15 

and its absolute and relative errors 

Period 
Approximation of spread 

by formula (57) for  
τ2 = 25, τ1 = 15 

Absolute error  
of approximation 

Relative error  
of approximation 

 ∆ f (τ2, τ1) dε  [dε/|∆ f (τ2, τ1)|]×100 % 
88 - 94 -4,66193 0,18698 4,01% 
88 - 91 -4,18032 0,16876 4,04% 
91 - 94 -5,40149 0,19304 3,57% 

 
Thus the approximation (57) of forward rate spread for model with deter-

ministic volatility of the riskfree interest rate can be satisfactory in contrast to 
the approximation (43) for model with stochastic volatility. 

 
Conclusions 

 
In this paper the analysis of forward rate curves for enough wide class of 

the one factor affine time structure models that includes not only the Gaussian 
model Vasiček (1977) and the square root model CIR (1985) but also models 
with any levels of the lower boundary of the short term interest rates (see Ilieva 
(2000, 2001) or Medvedev (2003)) is resulted. This class of affine models is 
generated by process of the riskfree interest rate (1) with stochastic volatility. 
The detailed analysis of multifactor models with deterministic volatility (Gaus-
sian models) is resulted for the state variables that are generated by the equation 
(45). The problem connected to a negative slope of forward rate curves for the 
long term zero coupon yield rates was especially closely studied.  

For one-factor models with stochastic volatility the following results are de-
rived: 

• the probability that the forward rate curve slopes downwards for long 
term yield rates (19) is found and is shown that this probability is influenced es-
sentially not only by interest rate volatility but also by level of the lower bound-
ary of short term rates and parameters of the risk premium (see fig. 1 and 2); 

• the expectations, variances and covariances for the forward rates and the 
yield process volatility are calculated (formulae (22) – (27)); 

• the correlation between the forward rates and the yield process volatility 
is always positive and does not depend on term to maturity; its lower boundary 
(28) is found; 

• the average slope (expectation of a derivative) of the forward rate curves 
is negative for all terms to maturity (29); 

• the derivative of the forward rate curve and the local variance per time 
unit of zero coupon yield process with probability 1 are linearly connected and 
have complete negative correlation (ρ = − 1) for all terms to maturity (the for-
  



mulae (32) and (33)); the same results are obtained for the forward rate spread 
and the local variance of yield process (the formulae (39) and (40)); 

• the approximation of the forward rate spread (43) with the help of a lo-
cal variance is reduced to change of the spread expectation more than on 30 % 
and at real cases cannot be recommended for models with stochastic volatility 
for any terms to maturity. 

For one factor models with deterministic volatility (Gaussian models)  
• the probability that the forward rate curve slopes downwards for long 

term yield rates (the formula (44)) is found; 
• this probability always is more 0,5, increases as the term to maturity in-

creases but has the upper boundary that is dependent on the interest rate volatil-
ity (table 3, figure 3); 

• in the mean the slope of the forward rate curve is negative independent 
on term to maturity. 

For multifactor Gaussian models  
• the representation of state variable process in the explicit form is de-

rived and its covariance matrix is found (formula (46); 
• the modification of state variables simplifying the analysis and conven-

ient for practical application is offered (formulae (53) – (56)); 
• it is shown that the approximation offered by Brown and Schaefer 

(2000) is reduced to that as the forward rate spread it is accepted its expectation 
therefore the error of approximation is its stochastic component (formulae (51), 
(57)); 

• the estimation of accuracy of such approximation (59) is found; 
• on the basis of the numerical data from Brown and Schaefer (2000) the 

analysis two factor Gaussian models (Table 4-7) is carried out and it is shown 
that for this case the relative error of approximation is about 4 % (table 8). 

The approximation of Brown and Schaefer for forward rate spread for 
model with deterministic volatility of the riskfree interest rate can be satisfactory 
used in contrast to that approximation for model with stochastic volatility. 

 
References 

 
Aït-Sahalia, Y. (1996) Nonparametric Pricing of Interest Rate Derivative Securities. 

Econometrica 64, 527–560. 
Ait-Sahalia, Y. (1999) Transition densities for interest rate and nonlinear diffusions. Journ. of 

Finance 54, 1361-1395. 
Bali, T. G. (1999) An Empirical Comparison of Continuous Time Models of the Short Term 

Interest Rate. Journ. of Futures Markets 19, 777–797. 
Brown, R. H. and Schaefer, S. M. (1994) Interest Rate Volatility and Shape of the Term 

Structure. Phil. Trans. R. Soc. Lond. A 347, 563–576. 
Brown, R. H. and Schaefer, S. M. (2000) Why Long Term Forward Interest Rates (Almost) 

Always Slope Downalds. Working paper. London Business School.  

  



Christiansen Ch. (2001) Long Maturity Forward Rates. Working paper. The Aarhus School of 
Business. 

CIR: Cox, J. C., Ingersoll, J. E., and Ross, S. A.  (1979) Duration and the Measurement of 
Basis Risk. Journ. Business 52, 51–61. 

CIR: Cox, J. C., Ingersoll J. E., and Ross, S. A.  (1985) A Theory of the Term Structure of 
Interest Rate. Econometrica 53, 385–467. 

CKLS: Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders A. S. (1992) An Empirical 
Comparison of Alternative Models of the Short-Term Interest Rate. Journ. of Finance 
47, 1209–1227. 

Dai Q. and Singleton, K. J. (2000) Specification Analysis of Affine Term Structure Models. 
Journal of Finance 55(5), 1943-1978. 

Duffie, D. and Kan, R. (1996) A Yield-Factor Model of Interest Rates, Mathematical Finance 
6, 379–406. 

Duffie, D. and Singleton, K. J. (1997) An Econometric Model of the Term Structure of Inter-
est-Rate Swap Yields. Journ. of Finance 52, 1287–1321. 

Feller, W. (1951) Two singular diffusion problems. Annals of Mathematics. Vоl. 54, No. 1. Р. 
173–182.  

Gibbons, M. R. and Ramaswamy, K. (1993) A Test of the Cox, Ingersoll, and Ross Model of 
the Term Structure. Review of Financial Studies 6, 619–658. 

Heath D., Jarrow R., Morton A. (1992) Bond Pricing and Term Structure of Interest Rates: 
New Methodology for Contingent Claims Valuation. Econometrica 60, 77–105.  

Hull, J. C. (1993) Options, Futures, and Other Derivative Securities. Prentice Hall, Engle-
wood Cliffs. 

Ilieva, N. G. (2000) The Comparative Analysis of the Term Structure Models of the Affine 
Yield Class. Proc. of the 10-th Intern. AFIR Symposium. Tromso, 367–393. 

Ilieva, N. G. (2001) Use of Mathematical Models of the Interest Rate Processes for the Analy-
sis of Yield Time Series. Proc. of the 6-th Intern. Conf. “Computer Data Analysis and 
Modeling”, Minsk, 157–164. 

Kortanek, K. O. and Medvedev, V. G. (2001) Building and Using Dynamic Interest Rate 
Models. John Wiley & Sons, New York. 

Medvedev, G. A. (2003) Properties of yield curves and forward curves for affine term struc-
ture models. Proc. of the 13-th Intern. AFIR Symposium. Maastricht, 461–492. 

Pearson, N. D. and Sun, T.-S. (1994) Exploiting the Conditional Density in Estimating the 
Term Structure: An Application to the Cox, Ingersoll, and Ross model. Journ. of Fi-
nance 49, 1279–1304. 

Sun, T.-S. (1992) Real and Nominal Interest Rates: A Discrete-Time Model and Its Continu-
ous-Time Limit. Review of Financial Studies 5, 581–611. 

Vasiček, O. A. (1977) An Equilibrium Characterization of the Term Structure. Journ. of Fi-
nancial Economics 5, 177–188. 

 
 
 

  


	Note that v ( V (((, vV ( kD/(( ( x).
	The forward rate f\(t, Ò, T\(\) deter�
	D
	V
	D
	max PSD
	Table 4
	Table 5


	Table 6

	Elements of covariance matrixes (60)

