Таким образом, в общем случае, во-первых, нельзя пренебречь зависимостью между отсчетами случайного процесса, во-вторых, выражения для вычисления параметра размытости, полученные при $\rho=1$, на практике дают приемлемые результаты для случайных процессов, коэффициенты корреляции между соседними отсчетами которых достаточно близки к единице. В частности, как следует из табл. 1, 2, параметры размытости $h_{(12)}$ и $h_{(14)}$ могут использоваться в качестве аппроксимаций для h_{MISE} в случае, когда $\Delta=1/250$ и меньше.

- 1, Turlach B. A. Bandwidth selection in kernel density estimation; a review. Technical report, Louvain-la-Neuve, 1993.
- 2. Hardle W., Linton O. Handbook of Econometrics. 1994. Vol. 4. Chap. 38. P. 2297.
- 3. Krasnogir E. // Proceedings of the international conf. on computer data analysis and modeling. Minsk, 2007. Vol. 1. P. 132.
 - 4. Vasicek O. // J. of Financial Economics. 1977. Vol. 5. P. 177.
 - 5. Cox J. C., Ingersoll J. E., Ross S. A. // Econometrica. 1985. Vol. 53. № 2. P. 385.
 - 6. Ahn D.-H., Gao B. // Rev. Financial Studies. 1999. Vol. 12. № 4. P. 721.
- 7. Медведев Г. А. Математические основы финансовой экономики: в 2 ч. Ч. 2. Определение рыночной стоимости ценных бумаг. Минск, 2003. С. 174.
 - 8. Медведев Г. А. Диффузионные модели в финансовом анализе. Минск, 2010.
 - 9. Ait-Sahalia Y. // J. of Finance. 1999. Vol. 54. № 4. P. 1361.
 - 10. Ait-Sahalia Y. // Rev. Financial Studies. 1996. Vol. 9. № 2. P. 385.
 - 11. Sun T.-S. // Rev. Financial Studies. 1992. Vol. 5. P. 581.
 - 12. Duffie D., Singleton K. J. // J. of Finance. 1997. Vol. 52. № 4. P. 1287.
 - 13. Мильштейн Г. Н. // Теория вероятностей и ее применение. 1978. Т. 23. № 2. С. 414.

Поступила в редакцию 10.05.12.

Евгений Григорьевич Красногир – кандидат физико-математических наук, доцент кафедры теории вероятностей и математической статистики.

УДК 512.55

В. М. ШИРЯЕВ

3-КОММУТАТИВНЫЕ *m*-КОЛЬЦА

An *m*-ring, in which any superposition of its elements to be preserved under the even substitutions, is called 3-commutative. It is shown, that the class of such *m*-rings is a subvariety of the variety of null-symmetric *m*-rings, strictly containing the variety of commutative *m*-rings. It is proved, that any 3-commutative *m*-ring is an extension of a 3-commutative nil-*m*-ring by a direct sum of two ideals, the first of them being a commutative idempotent *m*-ring, where the multiplication coincides with the superposition, the other has null multiplication and respective to addition and superposition is an commutative reduced ring. For finite 3-commutative *m*-rings the above description is refined using extensions and semidirect products with participation of 3-commutative 0-nilpotent *m*-rings and commutative reduced rings or Boolean rings.

 $Ключевые\ c.noвa:\ m$ -кольцо, коммутативное m-кольцо, 3-коммутативное m-кольцо, расширения m-колец, полупрямые произведения m-колец, булево m-кольцо, идеал полугруппы.

Key words: m-ring, commutative m-ring, 3-commutative m-ring, extensions of m-rings, semi-direct products m-rings, Boolean rings.

Используются терминология и обозначения, введенные в [1-3], а также принятые в теории полугрупп и групп [4, 5], колец и полей [6, 7], почтиколец [8], решеток [9], универсальных алгебр [10, 11]. Универсальная алгебра $(K, +, \cdot, \circ)$ называется m-кольцом, если алгебра $(K, +, \cdot)$ является ассоциативным коммутативным кольцом с операциями сложения "+" и умножения "·" (редукт m-кольца K), алгебра (K, \circ) — полугруппой с операцией суперпозиции " \circ " (o-полугруппа m-кольца K), которая дистрибутивна справа относительно кольцевых операций сложения и умножения. Тогда универсальная алгебра $(K, +, \circ)$ является правым почтикольцом [8] (называемым o-почтикольцом m-кольца K).

В данной работе продолжается начатое в [3, 12] исследование *m*-колец с условиями, близкими к коммутативным (медиальные, слабо *с*-коммутативные, флексибильные и др.). Здесь вводится в рассмотрение 3-коммутативное *m*-кольцо с условием на *о*-полугруппу, когда любая суперпозиция его элементов не изменяется при четной перестановке этих элементов. Показано, что каждое такое *m*-кольцо К является расширением 3-коммутативного ниль-*m*-кольца при помощи коммутативного *m*-кольца, которое изоморфно прямому произведению двух *m*-колец, первое из которых идемпотентно и его умножение совпадает с суперпозицией, а второе имеет нулевое умножение и его *о*-почтикольцо является редуцированным кольцом. Для конечных 3-коммутативных *m*-колец получено более подробное описание с помощью конструкций типа расширений и полупрямых произведений

с участием 3-коммутативных 0-нильпотентных m-колец, коммутативных редуцированных колец или булевых колец.

Перед формулировкой основных теорем приведем некоторые обозначения, определения и допущения. $\mathbb{N} = \{1, 2, ...\}$, $\mathbb{N}_2 = \mathbb{N} \setminus \{1\}$. Для тождественного преобразования множества X применяется обозначение $\mathrm{Id}X$. При $n \in \mathbb{N}_2$ через A_n обозначается знакопеременная группа степени n. Пусть $(K, +, \cdot, \circ)$ есть m-кольцо. Будут часто использоваться соотношения правой дистрибутивности суперпозиции относительно кольцевых операций, т. е.

$$\forall a, b, c \in \mathbb{K} ((a+b) \circ c = a \circ c + b \circ c), \tag{1}$$

$$\forall a, b, c \in \mathbb{K} ((a \cdot b) \circ c = (a \circ c) \cdot (b \circ c)). \tag{2}$$

Сохраняются обозначения из [3]: множество ненулевых элементов подмножества $X\subseteq K$ обозначается через $X^\#$; мощность множества X – через X ; через X обозначается подгруппа группы X порожденная множеством X; при X и для X е X е X и для X е

правый сдвиг o-полугруппы (K, \circ); Im $\psi_c = K \circ c$ — его образ; Ker $\psi_c = \{x \in K \mid x \circ c = 0\}$ — его ядро. Также $\mathcal{N}(K) = \{a \in K \mid \exists n \in \mathbb{N}_2 \ (a^{[n]} = 0)\}$ — множество всех нильпотентных элементов (нильэлементов), $C(K) = \{a \in K \mid \forall x \in K(a \circ x = x \circ a)\}$ — множество всех ее центральных элементов (под-m-кольца, содержащиеся в C(K), также называются центральными), $\mathcal{E}(K) = \{a \in K \mid a^{[2]} = a\}$ — множество всех идемпотентов m-кольца K. Единица (правая, левая) o-полугруппы считается единицей (правой, левой) m-кольца K. Дополнительно введем обозначение $\mathcal{D}(K) = \{x \in K \mid \forall a, b \in K \ (x \circ (a + b) = x \circ a + x \circ b)\}$ — множество всех аддитивно дистрибутивных элементов m-кольца K; все под-m-кольца, содержащиеся в $\mathcal{D}(K)$, также называются аддитивно дистрибутивными. Заметим, что $C(K) \subseteq \mathcal{D}(K)$. Если K ег $\psi_0 = K$, то m-кольцо K называется нуль-симметричным. Далее все m-кольца предполагаются нуль-симметричными. Если C(K) = K, то m-кольцо K будем называть коммутативным (вместо термина c-коммутативного m-кольца в [1-3]). m-Кольцо K называется \mathcal{E} -центральным, если $\mathcal{E}(K) \subseteq C(K)$; с нулевым умножением, если K: K = $\{0\}$; интралатентным, если

$$\forall a, b, c \in \mathbb{K} (a \circ b = 0 \Rightarrow b \circ c \circ a = 0); \tag{3}$$

3-коммутативным (основной здесь объект изучения), если выполняется тождество

$$\forall a, b, c \in \mathbb{K} (a \circ b \circ c = b \circ c \circ a); \tag{4}$$

ниль-m-кольцом, если $\mathcal{M}(K)=K$; 0-нильпотентным, если $\underbrace{K \circ ... \circ K}_{n \text{ pas}}=\{0\}$ для некоторого $n \in \mathbb{N}$; вполне

полупростым (без нильпотентных элементов), если $\mathcal{N}(K) = \{0\}$; вполне простым (без делителей нуля), если $K^{\#} \subset K^{\#}$; идемпотентным, если $\mathcal{E}(K) = K$, глобально идемпотентным, если $K \circ K = K$, глобально квазиидемпотентным, если $\mathcal{E}(K) = K$; ортодоксальным, если $\mathcal{E}(K)$ является подполугруппой полугруппы (K, \circ) . Из теории полугрупп известно, что коммутативная полугруппа идемпотентов (K, \circ) является нижней полурешеткой относительно порядка " \leq " заданного по формуле: для $a, b \in K$

$$a \le b \Leftrightarrow a = b \circ a,$$
 (5)

где в качестве наибольшей общей миноранты $a \wedge b$ элементов a и b выступает $b \circ a$. В случае если эта полугруппа является o-полугруппой коммутативного идемпотентного m-кольца K, соответствующая полурешетка относительно такого порядка на самом деле является решеткой [1, 3, 9], где в качестве наименьшей общей мажоранты $a \vee b$ элементов a и b выступает $a + b - b \circ a$. Более того, решетка (K, \wedge, \vee) является в этом случае обобщенной булевой решеткой, т. е. когда всякий ее главный идеал есть булева решетка. Если $a \leq b$, то дополнением элемента a в главном идеале, порожденном элементом b, будет b - a. В случае наличия наибольшего элемента (k) примеру, конечности (k) решетка (k) оказывается булевой и этот наибольший элемент является единицей (k)-кольца (k)-кольца (k)-кольцом, если умножение "·" совпадает с суперпозицией "(k)", а если, кроме того, (k)-кимеет единицу, — то булевым (k)-кольцом. Умножение в (k)-кольце (k)-кольцо (k)-коль

 $I \subseteq C(K)$. Расширение считается расщепляемым, если в K существует под-m-кольцо B, изоморфное L, такое, что K = B + I и $B \cap I = \{0\}$. Тогда K также называют полупрямым произведением идеала I на под-m-кольцо B или полупрямым произведением m-кольца I на m-кольцо B. Аналогично определяется разложение полугруппы в полупрямое произведение ее идеала на подполугруппу. Если $(K, +, \cdot)$ – коммутативное кольцо, H – подполугруппа полугруппы (K, \circ) , $n \in \mathbb{N}$, $\{H_i\}_{i=1, \dots, n}$ – конечное семейство

идеалов полугруппы H такое, что $H = \sum_{i=1}^{n} H_{i}$, то H считается прямой суммой этого семейства, если ка-

ждый элемент из H единственным образом представляется в виде суммы элементов из этих идеалов с точностью до перестановки слагаемых и добавления или удаления нулевых элементов.

Теорема 1. Если K-3-коммутативное m-кольцо, то множество $\mathcal{N}(K)$ является его идеалом и m-кольцо K есть расширение 3-коммутативного ниль-m-кольца $\mathcal{N}(K)$ при помощи 3-коммутативного вполне полупростого m-кольца $L=K/\mathcal{N}(K)$.

В дальнейшем будем обозначать через ν естественный гомоморфизм $K/\mathcal{M}(K)$.

Теорема 2. Пусть L-3-коммутативное вполне полупростое m-кольцо. Тогда имеются три возможности:

- А) т-кольцо L является обобщенно булевым;
- b) m-кольцо L имеет нулевое умножение, а его о-почтикольцо является коммутативным редуцированным кольиом;
- В) т-кольцо L разлагается в прямую сумму двух идеалов, которые как т-кольца удовлетворяют соответственно условиям A) и E).
- В условиях теоремы 2 используем запись $L = B \oplus U$, где B или нулевое m-кольцо, или удовлетворяет условию A), а U или нулевое, или удовлетворяет условию B).

Следствие I. Пусть L-3-коммутативное вполне полупростое конечное m-кольцо. Тогда L есть коммутативное m-кольцо с единицей, которое разлагается в прямую сумму двух идеалов: $L=B\oplus U$, где B- или нулевое m-кольцо, или булево, а U- или нулевое, или имеет нулевое умножение, а его o-почтикольцо есть кольцо, разлагающееся в прямую сумму конечного семейства идеалов, являющихся конечными полями.

В обозначениях теоремы 2 и следствия 1 в случае ненулевого U будем считать, что кольцо $(U, +, \circ)$ есть прямая сумма семейства $\{\mathcal{H}_i\}_{i\in\mathcal{A}}$ идеалов, являющихся конечными полями, где i – единица поля \mathcal{H}_i .

Теорема 3. Пусть K-3-коммутативное конечное т-кольцо, не имеющее единицы, и $N=\mathfrak{M}(K)$, L=K/N, |L|>1, |N|>1. В этом случае K является полупрямым произведением 0-нильпотентного 3-коммутативного идеала I на центральное под-т-кольцо $K_1=K\circ 1$ с единицей, а N- полупрямым произведением того же идеала I на центральное в K под-т-кольцо $N_1=N\circ 1$. В свою очередь, K_1 является центральным расширением 0-нильпотентного коммутативного т-кольца N_1 при помощи вполне полупростого коммутативного т-кольца $L=B\oplus U$ (разложение по следствию I). При этом существует изоморфизм α решетки $\mathfrak{E}(L)$ на $\mathfrak{E}(K)=\mathfrak{E}(K_1)$ такой, что $\mathfrak{v}\circ\alpha=\mathrm{Id}\mathfrak{E}(K)$ и $\alpha\circ\mathfrak{v}=\mathrm{Id}\mathfrak{E}(L)$. Далее, имеется подполугруппа L_1 полугруппы (K_1,\circ) и семейство $\{B_1\}\cup\{H_i\mid i\in\mathcal{A}\}\cup N_1$ ее идеалов такое, что их прямая сумма равна K_1 , а полугруппа L_1 разлагается в прямую сумму семейства $\{B_1\}\cup\{H_i\mid i\in\mathcal{A}\}$ ее идеалов. При этом $\mathfrak{v}(B_1)=B, \mathfrak{v}(H_i)=\mathcal{H}_i$ для $i\in\mathcal{A}$.

Для доказательства этих теорем потребуется несколько лемм. Обозначим через $\mathfrak P$ класс всех (нуль-симметричных) 3-коммутативных m-колец. Так как $\mathfrak P$ является подмногообразием [10] многообразия нуль-симметричных m-колец, то верна следующая

Лемма 1. Класс \$\Pi\$ включает в себя все коммутативные т-кольца, замкнут слева и справа (т. е. всякое под-т-кольцо 3-коммутативного т-кольца 3-коммутативно и каждый его гомоморфный образ 3-коммутативен), а также замкнут относительно взятия прямых произведений любых семейств 3-коммутативных т-колец. □

Пример 1. Пусть $(K, +, \cdot, \circ)$ – дистрибутивное т-кольцо с нулевым умножением, а кольцо $(K, +, \circ)$ является свободным нильпотентным класса 3 (т. е. $K \circ K \circ K = \{0\}$) с двумя порождающими. Очевидно, что т-кольцо K является не коммутативным 3-коммутативным т-кольцом. \square

Этот пример показывает, что класс \mathfrak{P} не совпадает с классом коммутативных m-колец.

Лемма 2. Пусть К – 3-коммутативное т-кольцо. Тогда

- (i) $K \circ K \subseteq C(K)$;
- (ii) *т-кольцо* К *Е-центрально*;
- (iii) *т-кольцо* К интралатентно.

Доказательство. Свойство (i) непосредственно следует из (4). Отсюда ввиду включения $\mathcal{E}(K) \subseteq K \circ K$ получаем (ii). Далее, если $a, b, c \in K$ и $a \circ b = 0$, то согласно (4) $0 = a \circ b \circ c = b \circ c \circ a$ и (3) выполняется, так что K интралатентно.

Следствие 2. Пусть К – 3-коммутативное m-кольцо, $n, k \in \mathbb{N}$; $n \le k$; $a_1, a_2, ..., a_k \in \mathbb{K}$, при этом $a^{[n]} = 0$ и в последовательности $a_1, a_2, ..., a_k$ элемент a встречается по меньшей мере n раз. Тогда $a_1 \circ a_2 \circ ... \circ a_k = 0$.

Доказательство. Благодаря интралатентности К в правую часть соотношения $a^{[n]}=0$ между сомножителями, а также справа и слева можно вставлять любые элементы из К без нарушения равенства нулю, откуда и следует утверждение.

Следствие 3. Пусть K — 3-коммутативное *m*-кольцо, $n \in \mathbb{N}$; $n \geq 3$; $a_1, a_2, ..., a_n \in \mathbb{K}$; $\sigma \in A_n$. Тогда $a_{\sigma(1)} \circ a_{\sigma(2)} \circ ... \circ a_{\sigma(n)} = a_1 \circ a_2 \circ ... \circ a_n$.

Доказательство следует из соотношения (4) и из того, что знакопеременная группа A_n порождается циклами длины 3. \square

Лемма 3. Если т-кольцо К вполне просто, Е-центрально и имеет ненулевой идемпотент, то этот идемпотент является единицей этого т-кольца.

Доказательство. Пусть $a, e \in \mathcal{E}(K)^{\#}$. Тогда $a \circ e = a \circ e \circ e, (a - a \circ e) \circ a = 0$ и $a \circ e = 0$, так как K вполне просто. Теперь $a \circ e = e \circ a$ ввиду \mathcal{E} -центральности K. \Box

Лемма 4. Для того чтобы т-кольцо К было вполне простым 3-коммутативным, необходимо и достаточно, чтобы его о-почтикольцо было коммутативным кольцом с сокращением, а умножение тривиально.

Доказательство. Пусть К — 3-коммутативное вполне простое m-кольцо и $a \in K^{\#}$, $b \in K$. Исходя из (4), выводим $a \circ b \circ a = b \circ a \circ a$, $(a \circ b - b \circ a) \circ a = 0$. Сокращая на a справа, имеем $a \circ b = b \circ a$. Таким образом, m-кольцо K коммутативно, поэтому o-почтикольцо $(K, +, \circ)$ является коммутативным кольцом и ввиду отсутствия делителей нуля это кольцо является кольцом с сокращением. В заключение отметим, что согласно теореме 2 п. 1.1 гл. IV [3] умножение в m-кольце K тривиально. Необходимость доказана. Достаточность тривиальна. \Box

Следствие 4. Пусть К – вполне полупростое 3-коммутативное т-кольцо. Тогда оно коммутативно.

Доказательство. При данных допущениях согласно следствию 6 п. 2.6 гл. IV [3] и лемме 1 m-кольцо К разлагается в подпрямое подпроизведение некоторого семейства вполне простых 3-коммутативных m-колец, которые коммутативны согласно лемме 4. Поэтому m-кольцо К коммутативно. \square

Доказательство теоремы 2. Предполагаем, что K — вполне полупростое 3-коммутативное m-кольцо. Доказательство опирается на лемму 4 и доказательство следствия 3 и следует доказательству теоремы 2 из [12]. \square

Доказательство следствия 1. Воспользуемся обозначениями теоремы 2 и ее доказательства. Пусть K — конечное вполне полупростое 3-коммутативное m-кольцо. Ввиду конечности обобщенное булево m-кольцо B является булевым m-кольцом с единицей.

Для обоснования утверждения о второй компоненте U рассмотрим разложение ее o-почтикольца в подпрямое произведение семейства $\{K_{\lambda}\}_{\lambda\in\Lambda_{2}}$ конечных вполне простых коммутативных колец. Так как некоторая степень каждого ненулевого элемента кольца $(K_{\lambda}, +, \circ)$ есть ненулевой идемпотент, приходим благодаря лемме 3 к тому, что это кольцо является конечной областью целостности и потому полем. Значит, U является подпрямым произведением конечного семейства конечных полей. Ввиду простоты этих колец согласно теореме Фостера — Пиксли [11, 13] это есть прямое произведение конечных полей. Благодаря конечности и коммутативности m-кольцо K должно иметь единицу.

Далее предполагаем, что K - 3-коммутативное m-кольцо.

Лемма 5. $_{+}\langle \mathcal{N}(K) \rangle \subseteq \mathcal{N}(K)$.

Доказательство. Пусть $a, b \in \mathcal{N}(K)$ и для некоторого $n \in \mathbb{N}$ $a^{[n]} = b^{[n]} = 0$. Можно считать, что $n \geq 3$. При n = 3 с использованием (1) и (3) получим

```
(a+b)^{[2n]} = (a+b)^{[6]} = (a+b) \circ (a+b)^{[5]} = a \circ (a+b) \circ (a+b)^{[4]} + b \circ (a+b) \circ (a+b)^{[4]} = (a+b) \circ (a+b)^{[4]} \circ a + (a+b) \circ (a+b)^{[4]} \circ b = a \circ (a+b)^{[4]} \circ a + b \circ (a+b)^{[4]} \circ a + b \circ (a+b)^{[4]} \circ b + b \circ (a+b)^{[4]} \circ b = a^{[6]} + a^{[5]} \circ b + \dots + a^{[2]} \circ b \circ a \circ b \circ a + \dots + b^{[6]}.
```

В результате получим сумму одночленов, каждый из которых состоит из шести сомножителей a или b, содержащих по крайней мере три одного из них. Согласно следствию 2 каждый из этих одночленов равен 0. Поэтому $a+b\in\mathcal{N}(K)$. Также при n>3. \square

Лемма 6. $\mathcal{M}(K)\cdot K \cup \mathcal{M}(K)\circ K \subseteq \mathcal{M}(K)$.

Доказательство. Пусть $a \in \mathcal{N}(K)$, $x \in K$ и $a^{[n]} = 0$ для некоторого $n \in \mathbb{N}_2$. Используя (2), получим $(a \cdot x)^{[n]} = (a \cdot x) \circ (a \cdot x) \circ \ldots \circ (a \cdot x) = \ldots = (a \circ a \circ \ldots \circ a) \cdot (x \circ \ldots) = 0$. Для доказательства равенства $(a \circ x)^{[n]} = 0$ достаточно воспользоваться следствием 2. Таким образом, элементы $a \cdot x$ и $a \circ x$ нильпотентны и включение выполняется. \square

Лемма 7. *Множество* $\mathcal{N}(K)$ *стабильно слева в* K.

Доказательство. Пусть $a \in \mathcal{M}(K)$; $x, y \in K$. Положим $u = x \circ (y + a) - x \circ y$. Требуется показать, что $u \in \mathcal{M}(K)$. Для этого рассмотрим $u^{[2]}$ и применим свойства (1) и (4):

$$u^{[2]} = (x \circ (y+a) - x \circ y) \circ u = x \circ (y+a) \circ u - x \circ y \circ u = (y+a) \circ u \circ x - y \circ u \circ x = y \circ u \circ x - a \circ u \circ x + y \circ u \circ x = a \circ u \circ x.$$

Теперь, так как согласно лемме $6u^{[2]} = a \circ u \circ x \in \mathcal{N}(K)$ и $u \in \mathcal{N}(K)$, q. e. d. \square

Доказательство теоремы 1. В совокупности утверждения лемм 5–8 означают, что $\mathcal{N}(K)$ является идеалом m-кольца K. 3-Коммутативность m-колец $\mathcal{N}(K)$ и $L = K/\mathcal{N}(K)$ следует из 3-коммутативности K согласно лемме $1.\square$

Следствие 5. Если К есть 3-коммутативное глобально квазиидемпотентное m-кольцо, то K – коммутативное m-кольцо. Если, напротив, 3-коммутативное m-кольцо K не является глобально квазиидемпотентным, то его почтикольцо $(K, +, \circ)$ есть расширение коммутативного и дистрибутивного в нем идеала ${}_{+}\langle K \circ K \rangle$ при помощи кольца с нулевой суперпозицией.

Доказательство. Пусть K-3-коммутативное m-кольцо. Согласно лемме $2\ K\circ K\subseteq C(K)\subseteq \mathcal{D}(K)$ и с использованием (1) и (4) устанавливается, что множество $_+\langle\ K\circ K\rangle$ дистрибутивно, содержится в центре почтикольца $(K,+,\circ)$ и является в нем идеалом, фактор-почтикольцо по которому имеет нулевую суперпозицию. \square

Далее будем рассматривать случай конечного 3-коммутативного m-кольца. Предполагаем, что K-3-коммутативное конечное m-кольцо, $N=\mathcal{M}(K)$, L=K/N, |L|>1, L|N|>1 и K не имеет единицы, однако ортодоксально и множество $\mathcal{E}(K)$ является решеткой относительно порядка, заданного по формуле (5), с наибольшим элементом, который обозначаем через 1. При этом ввиду отсутствия единицы у o-полугруппы $K \circ 1 \neq K$. Согласно следствию 1 m-кольцо L является коммутативным и имеет единицу (обозначаемую далее через 1_L) и в общем случае разлагается в прямую сумму ненулевых идеалов $L=B\oplus U$, где B — булево m-кольцо (с наибольшим элементом 1_B), а U-m-кольцо с единицей 1_U (наибольшим элементом решетки $\mathcal{E}(U)$) с нулевым умножением, при этом его o-почтикольцо является прямой суммой некоторого конечного семейства конечных полей. Более подробно, если обозначить через \mathcal{A} множество минимальных элементов (атомов) решетки $\mathcal{E}(U)$, а для каждого $i \in \mathcal{A}$ максимальное подполе кольца $(U, +, \circ)$ с единицей i обозначить через \mathcal{H}_i , тогда это кольцо согласно следствию 1 разлагается в прямую сумму семейства идеалов $\{\mathcal{H}_i\}_{i\in\mathcal{A}}$, являющихся конечными полями. Отметим также, что 1_L — наибольший элемент решетки (L, \leq) .

Лемма 8. Пусть $x \in K$ и $x + N \in \mathcal{E}(L)$. Тогда существует и единственный идемпотент $e \in \mathcal{E}(K)$ такой, что $e \in x + N$.

Доказательство. Так как смежный класс x+N является подполугруппой конечной полугруппы (K, \circ), то содержит идемпотент $e \in \mathcal{E}(K)$. Покажем, что этот идемпотент единственный. В самом деле, согласно лемме 2 $\mathcal{E}(x+N)$ есть полурешетка относительно порядка " \leq ", заданного по формуле (5). Значит, в случае не одноэлементности этого множества для некоторого f выполняется соотношение e < f, т. е. $e = e \circ f = f \circ e$. Из e + N = f + N следует, что f - e = a для какого-то $a \in N$. Однако тогда

Вестник БГУ. Сер. 1. 2013. № 1
$$a^{[2]} = (f-e) \circ (f-e) = f \circ (f-e) - e \circ (f-e) = (f-e) \circ f - (f-e) \circ e = f \circ f - e \circ f - f \circ e + e \circ e = f - e = a,$$

что приводит к противоречию. Следовательно, $|\mathcal{E}(x+N)| = 1.$

Отметим, что гомоморфизм ν переводит ненулевой идемпотент из $\mathcal{E}(K)^{\#}$ в $\mathcal{E}(L)^{\#}$, поэтому и благодаря лемме 8 имеется биективное отображение α из $\mathcal{E}(L)$ на $\mathcal{E}(K)$ такое, что для $e \in \mathcal{E}(K)$ α (e + N) = e. Отсюда вытекают также следующие свойства.

Лемма 9. Имеют место равенства

$$(v \circ \alpha = \operatorname{Id} \mathcal{E}(K) \, \operatorname{u} \, \alpha \circ v = \operatorname{Id} \mathcal{E}(L)), \tag{6}$$

а также если $i_1, i_2 \in \mathcal{E}(L)$; $i_3, i_4 \in B$, $i_5, i_6 \in \mathcal{E}(U)$, то

A1) $\alpha(i_1 \circ i_2) = \alpha(i_1) \circ \alpha(i_2)$;

A2) $\alpha(N) = 0 \& \alpha(1_L) = 1$;

A3) $\alpha(i_1) \circ 1 = \alpha(i_1)$;

A4) $\alpha(i_1 + i_2 - i_1 \circ i_2) = \alpha(i_1) + \alpha(i_2) - \alpha(i_1) \circ \alpha(i_2)$;

A5) $i_1 \leq i_2 \Rightarrow \alpha(i_1 - i_2) = \alpha(i_1) - \alpha(i_2)$;

A6) $\alpha(i_1) + \alpha(i_2) \in \alpha(i_1 + i_2) + N = i_1 + i_2$;

A7) $\alpha(i_3)\cdot\alpha(i_4)\in\alpha(i_1\cdot i_2)+N=i_1\cdot i_2;$

A8) $\alpha(i_1)\cdot\alpha(i_5)\in N$.

Доказательство. Соотношение (6) следует из биективности а. Далее, ввиду коммутативности и идемпотентности полугруппы ($\mathcal{E}(K)$, \circ) должно выполняться включение $\mathcal{E}(K) \circ \mathcal{E}(K) \subset \mathcal{E}(K)$, поэтому благодаря лемме 8 α есть изоморфизм полурешетки ($\mathcal{E}(L)$, \circ) на ($\mathcal{E}(K)$, \circ), откуда следует A1). Одновременно α является изоморфизмом решетки ($\mathcal{E}(L)$, \wedge , \vee) на ($\mathcal{E}(K)$, \wedge , \vee), откуда следуют соотношения A2) – A5). A6), A7) следуют из (6) и из того, что ν – гомоморфизм. Далее, поскольку $L\cdot U=\{0\}$, имеем $\alpha(i_1)$ · $\alpha(i_5) \in \mathbb{N}$. \square

Рассмотрим эндоморфизм $\psi_1: x \mapsto x \circ 1$ редукта *m*-кольца К. Обозначим $I = \operatorname{Ker} \psi_1, \ K_1 = \operatorname{K} \circ 1 =$ $= \text{Im } \psi_1$. Ввиду идемпотентности 1 этот эндоморфизм является идемпотентным эндоморфизмом о-полугруппы и, значит, самого т-кольца К. Отсюда выводится

Лемма 10. Пусть К – 3-коммутативное конечное т-кольцо, не являющееся коммутативным. Тогда оно разлагается в полупрямое произведение его 0-нильпотентного идеала на центральное коммутативное под-т-кольио.

Доказательство. Продолжая предыдущие рассуждения, отметим, что согласно лемме 2.3.1 гл. І из [2] наличие идемпотентного эндоморфизма ψ_1 приводит к разложению m-кольца К в полупрямое произведение идеала I на под-m-кольцо K_1 . Под-m-кольцо K_1 является центральным согласно лемме 2. Покажем, что $I \subseteq N$. В самом деле, допустим, что $x \in I$. Тогда $x \circ 1 = 0$. Предположим, что $x \notin N$. Тогда ввиду конечности К для некоторого идемпотента $e \in \mathcal{E}(K)^{\#}$ и $m \in \mathbb{N}$ будет $x^{[m]} = e$. При этом согласно лемме 2 $e=e\circ 1=x^{[m]}\circ 1^{[m]}=(x\circ 1)^{[m]}$, откуда получим противоречие. Значит, $x\in N$ и $I\subseteq N$. \square

Положим $G_i = \{g \in \mathbb{K} \mid g \circ \alpha(i) = g \& \exists k \in \mathbb{N} (g^{[k]} = \alpha(i))\}$. Согласно условию A3) леммы 9 для $g \in G_i$ будет $g \circ 1 = g \circ \alpha(i) \circ 1 = g \circ \alpha(i) = g$, поэтому $G_i \subseteq K_1$.

Лемма 11. Пусть $i \in A$. Тогда G_i является максимальной подгруппой с идемпотентом $\alpha(i)$ коммутативной полугруппы (K_1 , \circ). При этом $\nu(G_i) = \mathcal{H}_i^{\#}$.

Доказательство. Если g – элемент из максимальной подгруппы с идемпотентом $\alpha(i)$, то ввиду конечности К этот элемент в некоторой степени равен $\alpha(i)$, поэтому $g \in G_i$. Очевидно, что (G_i, \circ) есть группа с единицей $\alpha(i)$. Далее, так как подгруппа $\mathcal{H}_i^{\#}$ полугруппы (U, \circ) состоит из ее элементов, некоторая степень которых равна i, то $v(G_i) \subseteq \mathcal{H}_i^{\#}$. Обратно, если $x \in K$ и $x + N \in \mathcal{H}_i^{\#}$, тогда $x \circ \alpha(i) + N \in \mathcal{H}_i^{\#}$ и для некоторого $k \in \mathbb{N}$ $(x \circ \alpha(i))^{[k]} = e$, где $e \in \mathcal{E}(K)^{\#}$. Из-за того, что $v(e) \in \mathcal{E}(K)^{\#} \cap v(e) \in \mathcal{E}(K)^{\#} \cap \mathcal{H}_i$, имеем v(e) = i и $e = \alpha(i)$. Так что $x \circ \alpha(i) \in G_i$ и $x + N = v(x \circ \alpha(i)) \in v(G_i)$. Егдо, $v(G_i) = \mathcal{H}_i^{\#}$. \square

Обозначим еще $\mathcal{H}_i = G_i \cup \{0\}$. Ясно, что (H_i, \circ) есть группа с внешне присоединенным нулем и согласно лемме 11 $\nu(H_i) = \mathcal{H}_i$. Пусть теперь $i, j \in \mathcal{A}$ и $i \neq j$. Покажем, что

$$H_i \circ H_i = H_i \cap H_i = \{0\}. \tag{7}$$

В самом деле, если $g \in G_i$ и $h \in G_i$, то $g \circ h = g \circ \alpha(i) \circ h \circ \alpha(j) = g \circ h \circ \alpha(i) \circ \alpha(j) = 0$, а также если g = h, то $g \circ \alpha(i) = h \circ \alpha(j)$, откуда $g \circ \alpha(i) \circ \alpha(i) = h \circ \alpha(j) \circ \alpha(i) = 0$, что приводит к противоречию. Так что (7) выпол-

Введем еще обозначения
$$H = \sum_{i \in \mathcal{A}} H_i$$
, $B_1 = \alpha(B)$, $L_1 = B_1 + H$, $N_1 = N \circ 1$. Тогда имеет место

Лемма 12.
$$L_1$$
 есть подполугруппа полугруппы (K_1, \circ), а ее подполугруппы из семейства $\{B_1\} \cup \{H_i | i \in \mathcal{A}\}$ (8)

суть ее идеалы, при этом L_1 есть прямая сумма этих идеалов. Также $L_1 \cap N_1 = \{0\}$.

Доказательство. Отметим сначала, что $v(B_1)=B$ и согласно лемме 11 v(H)=U, поэтому если $g\in B_1,\ h\in H$, то $g\in \alpha(B),\ g\circ h=g\circ \alpha(1_U)\circ h=0$. Так что $B_1\circ H=\{0\},\ B_1\circ L_1\subseteq B_1$. Далее с использованием (7) нетрудно показать, что для всякого $i\in \mathcal{A}$ H_i есть идеал полугруппы L_1 . Далее, для утверждения о прямой сумме требуется показать, что общим элементом одного из идеалов семейства (8) с суммой остальных является 0. Предположим сначала, что $g\in B_1\cap H$. Тогда $g\in \alpha(B)\cap\alpha(E(U))$, поэтому g=0. Пусть теперь для некоторого $i\in \mathcal{A}$ $g\in H_i\cap\sum_{j\in \mathcal{A},\ j\neq i}H_j$. Тогда согласно лемме 11 $v(g)\in H_i\cap\sum_{j\in \mathcal{A},\ j\neq i}\mathcal{H}_j=1$

 $= \{N\}$, поэтому $g \in N \cap H_i = \{0\}$ и g = 0. Значит, L_1 есть прямая сумма семейства идеалов (8).

Теперь предположим, что элемент $a \in N$ представлен в виде суммы нескольких ненулевых элементов из различных идеалов семейства (8). К примеру, пусть $a = \alpha(i) + g$, где $i \in B^{\#}$, $g \in G_j$, $j \in \mathcal{A}$. Тогда $g = g \circ \alpha(j) = a \circ \alpha(j) + \alpha(i) \circ \alpha(j) = a \circ \alpha(j) \in N$. Следовательно, $L_1 \cap N_1 = \{0\}$. \square

Лемма 13. Полугруппа (K_1, \circ) разлагается в прямую сумму семейства $\{B_1\} \cup \{H_i \mid i \in \mathcal{A}\} \cup \{N_1\}$ ее идеалов.

Доказательство. Так как $v(L_1) = v(K_1) = L$, то каждый элемент $x \in K_1$ представляется в виде x = u + a, где $u \in L_1$, $a \in N$. Тогда $x = x \circ 1 = u \circ 1 + a \circ 1 \in L_1 + N_1$. Теперь ввиду равенства $L_1 \cap N_1 = \{0\}$ и доказательства леммы 12 следует утверждение. \square

Доказательство теоремы 3. Предположим, что K-3-коммутативное конечное m-кольцо, не имеющее единицы, и $N = \mathcal{N}(K)$, L = K/N, |L| > 1, |N| > 1. Согласно теореме 1 и лемме 10 множество Nесть идеал т-кольца К, являющийся 3-коммутативным ниль-т-кольцом, а ввиду конечности это m-кольцо 0-нильпотентно. По той же теореме m-кольцо L есть 3-коммутативное вполне полупростое, которое согласно следствию 1 коммутативно, имеет единицу и разлагается в прямую сумму двух идеалов B и U, где B — или нулевое m-кольцо, или булево, а U имеет нулевое умножение, а его o-почтикольцо есть кольцо, разлагающееся в прямую сумму $\{\mathcal{H}_i\}_{i\in\mathcal{A}}$ идеалов, являющихся конечными полями, где i – единица поля \mathcal{H}_i . Согласно лемме 10 расширение N при помощи L расщепляется. Далее, как уже сказано перед леммой 8, Е(К) есть решетка с наибольшим элементом, обозначаемым через 1. При этом ввиду отсутствия единицы у К правый сдвиг ψ_1 есть не сюръективный идемпотентный эндоморфизм т-кольца К, так что К является полупрямым произведением его идеала $I = \text{Ker } \psi_1$ на центральное под-*m*-кольцо $K_1 = K \circ 1$ с единицей, а N является полупрямым произведением того же идеала I на центральное в K под-m-кольцо $N_1 = N \circ 1$. Из этого же следует, что K_1 является центральным расширением 0-нильпотентного коммутативного m-кольца N_1 при помощи вполне полупростого коммутативного m-кольца $L = B \oplus U$. Согласно лемме 1 существует изоморфизм α решетки $\mathcal{E}(L)$ на $\mathcal{E}(K) = \mathcal{E}(K_1)$ такой, что $\nu \circ \alpha = \mathrm{Id}\mathcal{E}(K)$ и $\alpha \circ \nu = \mathrm{Id}\mathcal{E}(L)$. Далее, из лемм 11, 12, 13 следует, что имеется подполугруппа L_1 полугруппы (K_1 , \circ) и семейство $\{B_1\} \cup \{H_i \mid i \in \mathcal{A}\} \cup N_1$ ее идеалов такое, что их прямая сумма равна K_1 , а полугруппа L_1 разлагается в прямую сумму семейства $\{B_1\} \cup \{H_i \mid i \in \mathcal{A}\}$ ее идеалов. При этом $v(B_1) = B$, $v(H_i) = \mathcal{H}_i$ для $i \in \mathcal{A}$.

- 1. Ширяев В. М. Кольца с дополнительной операцией суперпозиции. Минск, 2004.
- 2. Ширяев В. М. Нуль-симметричные мультиоператорные почтикольца: в 3 т. Т. 1 [Электронный ресурс]. Минск, 2009. Деп. в БелИСА 27.10.09, № 200934.
- 3. Ширяев В. М. Нуль-симметричные мультиоператорные почтикольца: в 3 т. Т. 2 [Электронный ресурс]. Минск, 2009. Деп. в БелИСА 27.10.09, № 200935.
 - 4. Клиффорд А., Престон Γ . Алгебраическая теория полугрупп: в 2 т. М., 1972. Т. 1.
 - 5. Холл М. Теория групп. М., 1962.
 - 6. Ленг С. Алгебра. М., 1968.
 - 7. Мельников \bar{O} . B., Ремесленников B. H., Романьков B. A. идр. Общая алгебра: в 2 т. M., 1990. T. 1.
 - 8. Pilz G. Near-rings. 2nd ed. Amsterdam, 1983.
 - 9. Биркгоф Г. Теория решеток. М., 1984.
 - 10. Кон П. Универсальная алгебра. М., 1968.
 - 11. Пинус П. Конгруэнц-модулярные многообразия алгебр. Иркутск, 1986.
 - 12. Ширяев В. М. // Вестн. БГУ. Сер. 1. 2011. № 2. С. 76.
 - 13. Foster A. L., Pixley A. F. // Math. Zeitschr. 1964. Bd. 85. № 2. S. 169.

Поступила в редакцию 10.02.12.

Владимир Михайлович Ширяев - кандидат физико-математических наук, доцент кафедры высшей математики.