ОПТИЧЕСКАЯ ДИАГНОСТИКА ЛАЗЕРНО-ИНДУЦИРОВАННЫХ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В ТОНКИХ ПЛЁНКАХ ГЕРМАНИЯ НА КРЕМНИИ И ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖКАХ

Р. И. Баталов¹, Р. М. Баязитов¹, Г. А. Новиков¹, И. А. Файзрахманов¹, Г. Д. Ивлев², С. Л. Прокопьев²

¹Казанский физико-технический институт КазНЦ РАН, Казань, Россия ²Белорусский государственный университет, Минск, Беларусь E-mail: batalov@kfti.knc.ru

В развитие исследования [1] особенностей лазерной модификации эпитаксиальных гетеросистем Si_{1-x}Ge_x/Si в данной работе в тех же условиях изучалась динамика воздействия наноипульсного излучения рубинового лазера на тонкие (200-600 нм) плёнки Ge, полученные магнетронным распылением и ионно-лучевым осаждением на подложки кремния, сапфира и кварца. Такая работа была инициирована недавними публикациями по созданию электролюминесцентных диодов, а также оптически и электрически накачиваемых лазеров на напряженных и сильно легированных гетероструктурах Ge/Si, излучающих в области телекоммуникационной длины волны 1.5-1.6 мкм при комнатной температуре (обзорная статья [2]). Основным методом создания таких слоев является молекулярно-лучевая эпитаксия. В данной работе для создания гетероструктур Ge/Si применялись более совместимые с микроэлектроникой методы формирования, включающие магнетронное ионно-лучевое распыление Ge или осаждение В сочетании последующим импульсным лазерным отжигом (ИЛО). Такие обработки позволяют управлять структурным состоянием и уровнем легирования слоев Ge. Наряду с подложками кремния применялось осаждение на прозрачные диэлектрические подложки (сапфир и кварц), существенно различающиеся коэффициентом теплопроводности (46.06 и 1.38 Bт/(м K) против 149 Вт/(м К) у кремния), а также точкой плавления (2050 °С и 1720 °С) по сравнению с кремнием (1420 °С).

Перед осаждением подложки подвергались ультразвуковой очистке в изопропиловом спирте и промывке в дистиллированной воде. В процессе вакуумного осаждения, проводимого при давлении ~ 10^{-4} Торр, мишень из монокристаллического Ge бомбардировалась ионами инертных газов (Ar⁺, Kr⁺) с энергией до 1.5 кэВ в течении 5–15 мин, что соответствовало толщинам пленок 200-600 нм. После осаждения образцы подвергались ИЛО излучением рубинового лазера ($\lambda = 690$ нм, $\tau = 80$ нс) с плотностью энергии W = 0.2-1.4 Дж/см² с шагом 0.2 Дж/см² (Таблица). Диаметр облучаемой зоны составлял 4 мм.

Таблица.

N⁰	Подложка	Толщина Ge, <i>d</i> (нм)	Плотность энергии, <i>W</i> (Дж/см ²)
1	c-Al ₂ O ₃	200	0.2-1.4
2	c-Al ₂ O ₃	600	0.2-1.4
3	n-Si(100)	200	0.2-1.2
4	n-Si(100)	600	0.2-1.2
5	α -SiO ₂	400	0.2-1.2

Перечень исследованных образцов.

Зондированием зоны лазерного нагрева на $\lambda_1 = 0,53$ и $\lambda_2 = 1,06$ мкм проводилась диагностика фазового состояния поверхности образцов по отражению пробного пучка, сфокусированного в пятно ~ 1 мм при угле падения ~ 30°. Отраженное зондирующее излучение (ЗИ) детектировалось скоростными ФЭУ. Наблюдение динамики R(t) ЗИ позволяет идентифицировать образование расплава полупроводника по значительному возрастанию R вследствие фазового перехода в состояние жидкого металла, определить порог плавления W_m , время существования жидкой фазы τ при плотности энергии $W > W_m$, выявить особенности поведения R на стадии отвердевания.

Рис. 1. Осциллограммы лазерного импульса (ЛИ)) и сигналов ФЭУ: *a* - Ge/сапфир (*d* = 200 нм, $W = 0.2 \text{ Дж/см}^2$), δ - Ge/сапфир (*d* = 600 нм, $W = 0.8 \text{ Дж/см}^2$), ϵ - Ge/Si (*d* = 600 нм) - повторное облучение с $W = 1 \text{ Дж/см}^2$ после предварительного при $W = 0.2 \text{ Дж/см}^2$. t_{Π} - время, соответствующее максимуму интенсивности ЛИ

Результаты зондирования облучаемой зоны (Рис. 1) показали, что порог плавления слоев Ge соответствует минимальной энергии $W_m = 0.2$ $Дж/см^2$ (рис. 1, *a*). В области энергий 0.2–0.8 $Дж/см^2$ поведение R(t)проходит через три стадии: быстрый рост от начального уровня (~ 33-40%), соответствующего аморфному Ge, до плато на уровне 65-75%, ширина которого соответствует времени жизни расплава (τ) , c последующим возвратом отражения, К начальному уровню (рис. 1, б). соответствующего кристаллическому Ge В случае использования повышенных плотностей энергии ($W > 0.8 \ \text{Дж/cm}^2$) плато разбивается на ряд участков с различающимся уровнем отражения (рис. 1, в). Первый участок с повышенным отражением и коротким плато

длительностью около 100 нс связан с плавлением пленки Ge. Затем наблюдается резкий спад отражения с последующим небольшим ростом и выходом на плато большей длительности. Такое поведение R(t) можно объяснить частичным или полным испарением пленки Ge с поверхности подложки Si и ее последующим плавлением. Отметим, что подобное поведение R(t) не наблюдалось для подложек сапфира и кварца, не плавившихся при данных режимах отжига ввиду повышенных точек плавления. Из осциллограмм следует, что в ситуации «а» величина W недостаточна для проплавления плёнки Ge на глубину, превышающую толщину скин-слоя для ЗИ, и её отражательная способность не достигает максимума, как в ситуации «б», когда она обладает таковым в течение времени т. Осциллограммы «в», которые свидетельствуют о поэтапном отвердевании расплавленного слоя аналогично данным [1]. Из рис.2 следует, что величина т при равных W получается разной в зависимости от теплопроводности подложки и толщины слоя Ge. Наибольшее т (например, для $W = 0.4 \text{ Дж/см}^2$) наблюдается для подложки кварца (No5), обладающей наименьшей теплопроводностью и для подложек кремния и сапфира с более толстой пленкой Ge.

Рис 2. Зависимость времени жизни расплава (т) от плотности энергии импульсов (*W*) рубинового лазера для различных образцов.

Таким образом, получены новые данные о порогах плавления и абляции пленок Ge на различных подложках, а также временах жизни расплава в зависимости от режимов лазерной обработки.

Работа выполнена при поддержке БРФФИ (проект Ф13К-117) и РФФИ (грант №13-02-00348).

- 1. Прокопьев С. Л., Ивлев Г. Д., Гайдук П. И. // Радиационная физика твёрдого тела: Матер. 23-й Междунар. конф. М.: ФГБНУ "НИИ ПМТ", 2013. С. 140–147.
- 2. Liu J., Kimerling L.C., Michel J. // Semicond. Sci. Technol. 2012. V. 27, P. 094006 (13pp).