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Abstract

In this paper a mathematical model of Volume Free Elec-
tron Lasers (VFEL) is described. It proved itself be effec-
tive in simulation of different schemes of VFEL. Numerical
results obtained confirm all originated in VFEL physical
laws.

INTRODUCTION

First lasing of Volume Free Electron Lasers (VFEL) in
mm wavelength range was obtained recently [1]. So-called
volume multi-wave distributed feedback is the distinctive
feature of VFEL.

It is well-known, that the FEL lasing can be result of dif-
ferent types of spontaneous emission mechanisms: undu-
lator radiation, Smith-Purcell or Cherenkov radiation and
etc. Using positive feedback in FELs reduces the working
length and provides oscillation regime of generation. This
feedback is usually one-dimensional and can be formed ei-
ther by two parallel mirrors or by one-dimensional diffrac-
tion grating, in which incident and diffracted waves move
along the electron beam. Theoretical investigations show
that it is one of the effective schemes with n-wave vol-
ume distributed feedback (VDFB) where waves and elec-
tron beam spread angularly one to other.

The principles and theoretical foundations of VFEL op-
eration based on mechanism of multi-wave VDFB were
proposed in [2]. There it was shown that the increment of
instability for an electron beam passing through a spatially-
periodic target in degeneration points essentially increased
in comparison with single-wave system. This means the
noticeable reduction of electron beam current density nec-
essary for achievement the generation threshold. In X-ray
range this generation threshold can be reached for the in-
duced parametric X-ray radiation in crystals. It enables to
create X-ray laser. This valid for all wavelength ranges re-
gardless the spontaneous radiation mechanism. Prototypes
of VFEL based on induced radiation in three-dimensional
periodical structures were investigated in [2] and [3].

In VFEL operation the linear stage investigated in [2] -
[4] quickly changes into the nonlinear one where most of
the electron beam energy is transformed into electromag-
netic radiation. A detailed numerical analysis of this stage
is necessary for experiment design, optimal geometry de-
termination and result processing.
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VFEL SCHEMES

VFEL resonator of the experimental installation [1] is
formed by two diffraction gratings with different periods
and two smooth side walls. The interaction of the ex-
citing diffraction grating with the electron beam induces
Smith-Purcell radiation. The resonant grating provides dis-
tributed feedback of generated radiation with electron beam
by Bragg dynamical diffraction. Resonator design allows
varying its parameters during experiment. Exciting grating
can move to change the distance between gratings and the
gap between exciting grating and electron beam. Resonant
grating can rotate to change orientation of grating grooves
with respect to electron beam velocity that provides possi-
bility of tuning of Bragg diffraction conditions.

Volume resonator (so-called ”grid” volume resonator)
of the installation [5] is formed by a periodic structure
built from the metallic threads inside a rectangular waveg-
uide. Then the effect of anomalous transmission for elec-
tromagnetic waves could appear similarly to the Bormann
effect well-known in the dynamical diffraction theory of
X-rays [5]. The second (resonant) grating provides the dis-
tributed feedback of generated radiation with electron beam
by Bragg dynamical diffraction.

These both schemes can be reduced to the following sim-
ple scheme of VFEL (see Fig.1) by recounting of dielectric
susceptibility of the target.
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Figure 1: Scheme of two-wave VFEL in Bragg geometry.

Here an electron beam with electron velocityu passes
through spatially periodic target. When Bragg conditions
are fulfilled two strong waves can be excited in the tar-
get. If simultaneously electrons of the beam are under
Cherenkov condition, they emit electromagnetic radiation
in directions depending on diffraction regime. Case with-
out incident electromagnetic waves corresponds to oscilla-
tor generation regime. In our previous work we considered



other schemes of VFEL: two-wave Laue geometry, three-
wave Bragg-Bragg, Bragg-Laue and Laue-Laue geometry
[6]-[8].

Partly, threshold parameters of electron beam instabil-
ity in VFEL can be investigated by using linear theory. It
was shown [9] that in the system it exists several thresh-
old point of the beam current corresponding to beginning
of the electron beam instability, regenerative amplification
and generation. In our previous works it was shown that
variation of VDFB can change the type of generation.

MATHEMATICAL FORMULATION

The system of equations for all cases of VFEL is ob-
tained from Maxwell equations in the slowly-varying en-
velope approximation using the field representation in the
form E = eiEi exp {ikτi

r − ωt}, i = 0, ..., n − 1. Here
we restrict ourselves by considering two-wave VDFB. The
system forn-wave VDFB can be written by evident gener-
alization. So, we obtain the following nonlinear equations:
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/ω2, i = 0, 1, l = l0+δ. δ is de-
tuning from exact Cherenkov condition.γ0, γ1 are VDFB
cosines.Φ =

√

l0 + χ0 − 1/(βγ)2. χ±τ are Fourier com-
ponents of the dielectric susceptibility of the target.

System (1) must be supplemented with proper initial and
boundary conditions as well as equations for the phase dy-
namics:
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It was proposed in (2) that the electron beam is syn-
chronous with the waveE0 only. The integral form of
beam current in the right hand side of (1) is obtained by av-
eraging over the following initial phases of electrons in the
beam: entrance time of electron in interaction zoneωt0 and
transverse coordinate of entrance point in interaction zone
k⊥r⊥. Equation (2) depends on these two initial phases
only in combinationk⊥r⊥ − ωt0 (that appears in initial
condition for phase atz = 0). Therefore, in the mean field
approximation double integration over two initial phases
can be reduced to the single integration. As the result, the

averaged current in right hand side of the first equation of
(1) differs from expressions frequently used in literature
(see e.g.[11]). Method of averaging over initial phases of
electrons is well-known [12] and widely used in simula-
tion of BWT (backward wave tube), TWB (travelling wave
tube), FEL and other electronic devices. Let us adduce its
derivation. We consider magnetized electron beam which
propagation can be considered as one-dimensional. The
motion equation of one electron in the wave has the next
form:

z̈ =
e

mγ3
(eσn)Re{a exp(ik⊥r⊥ + ikzz − iωt)},

wheree andm are electron charge and mass respectively,
γ is the Lorentz factor of electron beam. Initial phase is an
individual mark of the electron in beam. Averaging over
this phase allows to pass from microscopical description
to macroscopical one. Averaging current and applying Li-
uville’s Theorem lead to the following expression:

j ∼ j0
∫

dΘ0dΘ1 exp {−iΘ(t, t0, r⊥)} =

j0
∫

dΘ0dΘ1 exp {−iΘ(t,Θ1 − Θ0)}
(3)

whereΘ(t, t0, r⊥) = kzz + k⊥r⊥ − ωt(z, t0) is an elec-
tron phase.t(z, t0) is a trajectory of electron emerged at
momentt0 in the target. Initial phase of electron in inter-
action region has the form:

Θ(t = t0, t0, r⊥) = k⊥r⊥ − ωt0 = Θ1 − Θ0.

Taking into account that the phase depends on initial phases
in combinationΘ1 − Θ0 only and performing change of
variables, we receive term with current in the form of right
hand side of (1).

We proposed numerical methods for VFEL modelling
[7]. They are implemented in computer code VOLC (VOL-
ume Code)[8]. It was developed on the basis of multiple
Fortran codes, created in 1991—2005 years. Dimensional-
ity is 2D (one spatial coordinate and one phase space coor-
dinate) plus time. Different VFEL geometries are investi-
gated in light of experiments on VFEL at INP.

NUMERICAL RESULTS

Let us summarize a great amount of numerical result ob-
tained [6]-[8] and recently. It was investigated:

• generation thresholds subject to beam current, target
length, target absorption, diffraction asymmetry fac-
torsβ for two- and three-wave geometries,

• width of the zone of amplification subject to beam cur-
rent for two- and three-wave geometries,

• SASE (Self Amplified Spontaneous Emission) regime
in Laue and Laue-Laue geometry,

• lasing in Bragg geometry with external mirrors for dif-
ferent reflection coefficients,

• generation regime in Laue geometry with external
mirrors,



• different degeneration modes for Bragg-Bragg and
Bragg-Laue geometries subject to tuning parameterδ,
parametersli and diffraction asymmetry factorsβi,

• bifurcation points corresponding to transitions be-
tween different regimes of generation for different ge-
ometries,

• dependence of position of bifurcation points on geom-
etry of VDBF and other VFEL parameters.

In [10] theoretically derived dependence of the threshold
current on asymmetry factor of VDFB was presented. This
relation confirms that VDFB allows to control the second
threshold current. Numerical results presented in Fig.2 are
in close agreement with the theory.
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Figure 2: Dependence of the threshold current on asymme-
try factor of VDFB

One of the main VFEL physical properties is the fol-
lowing dependence of threshold current in the case of
n mode in synchronism for n-wave VFEL [9]:jth ∼
1/(kL)3+2(n−1).

So, threshold current can be significantly decreased
when modes are degenerated in multiwave diffraction ge-
ometry ifk|χ|L ≫ 1. On the other hand interaction length
can be reduced at given current value. This was confirmed
in numerical experiments and depicted in Fig.3.

Last Fig.4 demonstrates attempts to simulate VFEL ex-
periment [13]. Here one can see dependence of the VFEL
generation intensity on the length of the ”grid” volume res-
onator with 5 threads in the frame marked with squares and
numerically simulated by us dependence of the wave am-
plitude on the resonator length for the electron beam with
the energy 200 keV and current density 2 kA/cm2.

CONCLUSION

We developed an instrument to model real VFEL exper-
iments. Mathematical model with computer code VOLC
allows to obtain all main VFEL physical dependencies and
to investigate the nonlinear stage of its operation.
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