СТРУКТУРА АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ ИЗЛУЧЕНИЯ МНОГОМОДОВОГО ЛАЗЕРА С ПРОИЗВОЛЬНОЙ ОГИБАЮЩЕЙ СПЕКТРА

Е. Д. Карих

Белорусский государственный университет, Минск E-mail: karikh@bsu.by

Ранее нами рассмотрены автокорреляционные свойства излучения многомодового лазера с симметричной (гауссовской) огибающей спектра [1]. В данной работе проанализирована структура автокорреляционной функции (АКФ) $R(\tau)$ излучения с произвольной (в том числе негладкой) формой огибающей. Подобные спектры наблюдаются, например, в случае слабой обратной связи от внешнего объекта [2].

Несмотря на присутствие в спектре многих продольных мод, излучение полупроводниковых лазеров все же удовлетворяет условию узкополосности $\Delta\omega \ll \omega_{00}$, где $\Delta\omega$ — ширина спектра генерации, ω_{00} — его центральная частота. АКФ подобного процесса представляется в виде [3]

$$R(\tau) = \sum_{q=-n}^{n} \int_{0}^{\infty} F_{q}(\omega) \cos(\omega \tau) d\omega = \sum_{q=-n}^{n} R_{q}(\tau), \tag{1}$$

где 2n+1 — число продольных мод в спектре, $F_q(\omega)$ — спектральная плотность мощности в q -й моде, $R_q(\tau)$ — АКФ q -й моды. Если функция $F_q(\omega)$ симметрична относительно ее центральной частоты ω_{0q} , то

$$R_{q}(\tau) = A_{q}(\tau)\cos(\omega_{0q}\tau), \quad A_{q}(\tau) = \int_{-\infty}^{\infty} F_{q}(\omega_{0q} + \Omega)\cos(\Omega\tau)d\Omega.$$
 (2)

При лоренцевской форме линии каждой отдельной моды, будем иметь

$$R(\tau) = \frac{\pi \delta \omega}{2} \exp\left(-\frac{\delta \omega}{2}\tau\right) \sum_{q=-n}^{n} P_{\omega q} \cos\left(\omega_{0q}\tau\right). \tag{3}$$

Здесь $P_{\omega q}$ — плотность мощности q -й моды на частоте ω_{0q} , $\delta\omega$ — спектральная ширина линии отдельных мод. Формула (3) позволяет устанавливать конкретную структуру АКФ излучения лазера с произвольным распределением (формой огибающей спектра) $P_{\omega q}$.

- 1. *Карих Е. Д.*. // Квантовая электроника: Матер. 8-й Междунар. конф. Мн.: БГУ, 2010. С. 91.
- 2. Карих Е. Д. // Вестник БГУ. Сер. 1. 2012, № 3. С. 7–11.
- 3. Карих Е. Д. // Вестник БГУ. Сер. 1. 2011. № 2. С. 45–49.