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The no arbitrage conditions are derived in the explicit form for the market, where 

the zero coupons bonds of various maturities are accessible for the investors to draw up 
the portfolios. It is supposed, that the investor at any moment of time has a possibility to 
make the self-financed portfolio of given value. It is considered that the processes of the 
short interest rate and rates of inflation follow the stochastic differential equations. The 
known result for a portfolio with two assets is extended on case of any number of assets 
and inflation. The no arbitrage condition for multi-factor models of a term structure of 
the interest rates is considered. The condition of existence of a risk free self-financed 
portfolio is obtained at first, and then for want of it fulfillment the no arbitrage 
condition is derived.  
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Introduction 

 
In the financial market the term arbitrage refers to the possibility of 

making a trading gain with no chance of loss. The idea expressed by the no 
arbitrage condition consists that in the equilibrium market two portfolios of 
securities, which ensure identical payments, should have in each instant the 
identical price. Intuitively it is clear that such definition of the price 
excludes the arbitrage. The arbitrage theory of market asset pricing is 
recently popular. It bases on the assumption that the financial market is 
arbitrage-free. To check the fulfillment of such assumption it is necessary 
to have a no arbitrage conditions. This explains the interest to derive such 
conditions.  

Under consideration of the continuous time mathematical models of 
the price dynamics in the financial market it is usually assumed that the 
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processes of the interest rates in the market follow the stochastic 
differential equations. It results that the process of the price of market asset 
also follows the stochastic differential equation. These random processes 
are described by some objective probability measure. The no arbitrage 
condition, usually used in such situation, is the assumption about existence 
of the equivalent martingale measure (Panjer et al., 1998). This condition is 
rather general but difficult checked because at present the problem on 
construction equivalent martingale (risk-neutral) measure waits for its 
solution. Therefore deriving of the no arbitrage conditions in the explicit 
form, without resorting to construction of equivalent martingale measure, is 
useful.  

The no arbitrage conditions for the continuous time one-factor models 
of the term structure of interest rate are most known (see for example, 
Black and Scholes, 1973). Usually these conditions are received for a 
portfolio with two financial assets in the financial market, in which there is 
also a risk free asset. Such condition states that the excess expected asset’s 
return over the short rate divided by the asset’s return volatility is 
independent of the asset’s maturity. The extension of this no arbitrage 
condition to the market with inflation (Riсhаrd (1978)) is known also. 
There the no arbitrage condition is formulated (without the proof) for a 
portfolio with three assets. It states that the excess expected asset’s return 
over the nominal short rate should be a linear combination of the asset’s 
return volatilites that are appropriate to both a stochastic dynamics of the 
real short interest rate and the rate of inflation respectively. The factors of 
this linear combination should not depend on the maturity and make sense 
of "market prices of risk" because of a stochastic dynamics of the real 
interest rate and rate of inflation.  

In the present paper the no arbitrage conditions are derived in the 
explicit form for the market, where the zero coupons bonds of n various 
maturities are accessible for the investors to draw up the portfolios. It is 
supposed, that the investor at any moment of time t has a possibility to 
make the self-financed portfolio of value S(t), by including in this portfolio 
of the bonds with maturities Тj, 1 ≤ j ≤ n, on the sum Sj. S(t) = . It 
is considered that the processes of the short interest rate and rates of 
inflation follow the stochastic differential equations, and the prices of the 
bonds are expressed by functions that have the mathematical derivatives of 
the necessary orders.  

∑ =
n
j jS1

The article is organized as follows. In Section 1 the no arbitrage 
condition in an one-factor model is derived. There the known result for a 
portfolio from two assets is extended to case of any number of assets. In 
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Section 2 adding of inflation complicates the statement of a problem of the 
previous section. The no arbitrage condition in the market with inflation is 
obtained also for a portfolio with any number of assets. Section 3 is 
devoted to the no arbitrage condition in the segmented market (without 
inflation), where it is considered, that in the market simultaneously there 
are some segments, in which the bonds with hardly distinguishing 
maturities enter, and each segment has its own risk free interest rate. It is 
considered that in this situation the investor has a possibility to purchase 
the bonds of any segment. In Section 4 the no arbitrage condition for multi-
factor models of a term structure of the interest rates is considered. In this 
section the vector process is accepted as a basis for the short interest rate 
process. A condition of existence of a risk free self-financed portfolio is 
obtained at first and then under its fulfillment the no arbitrage condition is 
derived. In this model the inflation is equivalent to some additional factor. 
In Section 5 some important special cases are discussed. 

 
1. The no arbitrage condition in an one-factor model 

 
In this section we shall consider the trade the default-free discount 

bonds with various dates of maturity in the market, which is described by 
an one-factor model. To exclude the arbitrage possibilities the portfolio, 
consisting of any combination of the bonds, in each instant should earn the 
same income, as risk-free asset of the same value. In this case for any 
number (greater two) bonds, sold in the market, the general no arbitrage 
condition at the determination of the bond prices it is possible to obtain. It 
states that the excess of expected bond’s return over the short interest rate 
divided by the bond’s return volatility is independent of the bond’s 
maturity. 

To demonstrate it mathematically for each T ≥ 0 we shall assume, that 
the process of the price {P (t, T), t ≤ T} of the default-free discount bonds 
maturing at time T, is Itô process (Björk, 1996) 
 

dP(t,T) = µ T(P(t,T), t) dt + σ T(P(t,T), t) dW(t). 
 

The superscript T emphasizes the dependence of a drift and volatility on the 
bond maturity date T. Dividing this equation by the bond price P (t, T), we 
have   
 

( )
( )

( )( )
( )

( )( )
( ) ( )tdW

TtP
tTtPdt
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The left-hand side is equal to the instantaneous yield interest rate of the 
bond. For a simplicity we use the symbols µ T(t) and σ T(t) to denote 

( )( )
( )TtP

tTtPT

,
,,µ  and ( )( )

( )TtP
tTtPT

,
,,σ  respectively and obtain 

 
( )
( )

( ) ( ) ( )tdWtdtt
TtP
TtdP TT σµ +=

,
, .                                        (1) 

 
That is µ T(t) and σ T(t) are respectively drift and volatility of the 
instantaneous yield interest rate of the bond. 

Now we shall consider case, when in the market one trades securities 
with n maturity dates Tj, j = 1, ..., n. Let investor has some money sum S(t), 
which can be spent for purchasing of securities in this market, and spends 
the sum Sj = Nj P(t,Tj) for purchasing Nj  of securities with maturity date Tj, 
so that 
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The increment of this portfolio value for an infinitesimal time interval is 
determined by equality 
 

dS(t) = ( ) ( )
( )∑∑
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that with regard for equation (1) results in a relation 
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where µ (j)(t) and σ (j)(t) are a drift and a volatility of yield of with maturity 
dates Tj, j = 1, ... , n. To obtain a risk-free return it is necessary, that the 
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sum in brackets in a stochastic term was equal to zero. That is for getting 
the risk-free profits it need to distribute the available sum S(t) so that to 

fulfill the equality . ( ) ( ) 0
1

=∑
=

n

j

j
j tS σ

Without loss of generality, suppose that σ (n)(t) ≠ 0, so that  
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Such choice Sn ensures for a time interval (t, t+ dt) the risk-free deriving of 
the profits that is equal to 
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Under no arbitrage the risk-free portfolio should earn interests according to 
the short rate r = r(t). It means, that in the market the no arbitrage 
conditions will be held if only for any distribution of the investor’s money 
{Sj} on types of securities for deriving of the risk-free profit the increment 
of the sum S(t) will be exactly equal to an increment of risk-free asset of 
the same value. In other words it should be fulfilled the equality 
 

dS(t) = S(t) r(t) dt = 
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Equating the obtained formulae for an risk-free increment of cost S(t), we 
come to equality 
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As this equality should be fulfilled for any distribution {Sj, 1 ≤ j ≤ n} of the 
available sum S(t) on types of securities, each term of this sum should be 
equal to zero. From here we come to the following condition of the no 
arbitrage condition  
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Thus, the ratio of excess expected bond’s return µ (j)(t)) of the securities 
with maturity dates Tj over the short interest rate r(t) to the volatility σ (j)(t) 
of process of yield interest rate of this securities under no arbitrage 
condition should not depend on maturity date and should be identical for all 
maturity dates. We shall designate this function through λ(r, t), and we 
shall obtain for any T ≥ t the known equality 
 

( ) ( )
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( )( )ttr
t

trt
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T
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σ
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− ,  

 
which is considered as definition of function λ(r, t) called a market price of 
risk or market risk premium. It means, that it is true a following 

Proposition 1.  In case of no arbitrage possibilities, there is a function 
λ(r, t) such, that it is valid the equality 
 

µT(t) = r(t) + λ(r(t), t) σ T(t)                                                (4) 
 
for any maturity dates T.   
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This equality is named the (local) nо аrbitrаgе соnditiоn.  
 

2. The no arbitrage condition in the market with inflation 
 

If an inflation occurs in the market then a nominal interest rate R(t), 
used for determination of the discount price of the bond, is determined not 
only actual short interest rate r(t) but also rate of inflation i(t), which 
reflects a relative changes in the consumer price index of consumer goods 
and services. Usually connection between these rates is described by the 
so-called Fisher equation (Fаbоzzi, 1995) 
 

1 + R (t) = (1 + r (t)) (1 + i (t)).                                           (5) 
 

We take that the process of the actual interest rate r(t) follows the 
stochastic differential equation 
 

dr(t) = µ 
r(r(t), t) dt  + σ 

r(r(t), t) dWr(t).                             (6) 
 
Similarly, we suppose that the process of the rate of inflation i (t) follows 
the following stochastic differential equation 
 

di(t) = µ 
i(i(t), t) dt  + σ  

i(i(t), t) dWi(t).                               (7) 
 
The subscripts in these equations show what process is characterized by the 
appropriate functions of drift and volatility, and also the Wiener processes. 
As the mechanisms underlying a stochastic change of the processes r (t) 
and i (t) are generally various and in the certain degree are independent, the 
processes Wr(t) and Wi(t) are various also and can be dependent only 
somewhat. Therefore in the general case the Wiener processes Wr(t) and 
Wi(t) can be presented as 
 

Wr(t) = ρ W0(t) + 21 ρ− W1(t),   Wi(t) = ρ W0(t) + 21 ρ− W2(t), 
 
where W0(t), W1(t), and W2(t) are independent standard Wiener processes, 
and ρ represents a coefficient of correlation between processes Wr(t) and 
Wi(t). In this section for a simplicity will be assumed that ρ  = 0. The result 
in more general case, when ρ ≠ 0, can be obtained as a special case from 
results of the Section 4. 

As in considered case the price of the discount bond is determined by 
the nominal interest rate, for maturity date T it is described by function      
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P(r, i, t, T). If we assume that function P(r, i, t, T) is differentiable on t and 
twice differentiable on r and i then the equation (1) by application of the Itô 
derivation formula is transformed to a form  
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, σσµ ++= ,             (8) 

 
where the arguments r and i at functions µ and σ are omitted for brevity. 
These functions are determined by the formulae 
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The actual price of the bond B(r, i, t, T) can be determined by division 

of a nominal price P (r, i, t, T) on a level of consumer prices C(t), which 
grows according to the rate of inflation i (t) (Riсhаrd, 1978). This growth is 
determined by the equation 
 

dС(t) = i(t)С(t)dt. 
 
Thus, B(r, i, t, T) = P (r, i, t, T)/C(t). Applying again formula Itô, we shall 
obtain the equation for process of the actual price of the bond with maturity 
date T as 
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T
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T
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Now again, as well as in preceding section, we shall consider case, 

when in the market one trades the bonds with n maturity dates Tj,  j = 1, ... , 
n, n > 2. Let investor spends for purchasing of bonds the sum S(t), 
purchasing Nj of bonds with maturity dates Tj, so that Sj = Nj P(t,Tj), i.e. 
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The increment of portfolio value of these bonds for an infinitesimal 

time interval is determined as well as above by equality 
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Let's assume now, that the processes of the bond prices with any 

maturity term are generated by the same short interest rate that follows 
process (6). Then with regard for equation (8) it is possible to derive the 
relation  
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where µ (j)(t) and σ (j)(t) are a drift and a volatility of yield of the bonds with 
maturity date Tj ,  j = 1, ... , n . To obtain the risk-free return it is necessary, 
that the sum into brackets in stochastic terms was equal to zero. It means 
that for deriving the risk-free profits it is necessary to distribute the 
available sum S(t) so that to fulfill the equality 
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The equalities (14) are the existence condition of risk-free self-financed 
portfolio. In order to obtain the no arbitrage condition it is necessary to add 
a demand that the self-financed portfolio has to earn at the risk-free 
nominal interest rate R(t), i.e. 
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Thus the no arbitrage condition is held if for any set {Sj} the following 
equalities are simultaneously fulfilled 
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The equalities (16) can be written in the matrix form 
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This can be considered as a system of equations with respect to {Sj}. In 
order that this system would have nontrivial solution it is necessary that a 
matrix rank would be less than n, n > 2, i.e. we obtain the equivalent 
condition 
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From this it follows that the rows of matrix are linear dependent (Horn and 
Johnson, 1986). Hence we have for each component of the rows of matrix 
the relations 
 

µ(j)(t) − R(t) = λr(t, r, i) ( ) ( )tj
rσ  + λi(t, r, i) ( ) ( )tj

iσ ,  1 ≤ j ≤ n.  (18) 
 
The factors λr(t, r, i) and λi(t, r, i) are independent on maturity date and 
make sense of market prices of risk in connection with a stochastic changes 
interest rates and inflation respectively. Note that for case n = 3 this result 
is contained in Riсhаrd (1978).  
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3. The no arbitrage condition in the segmented market 
 

The arguments of the previous sections is agreed with the theory of 
the term structure of the interest rates based on a so-called expectations 
hypothesis. According to this theory the forward interest rates are 
considered as unbiased estimates of expected future short interest rates. 
Therefore is natural the supposition that it is possible in the equations for 
processes of the bond prices with any maturity to use the same equation of 
process of the short interest rate. However not always the results of this 
theory will be agreed with market realities. In this connection there are also 
other theories of term structure (Hull, 1993). According to the theory of 
market segmentation there are simultaneously some independent processes 
of the short interest rates appropriate to various maturity terms and 
controlled by the supply and demand for assets with these terms. More 
often assets, which are traded in the market, are divided into three 
segments: short-term, intermediate term and long-term assets. Because of 
independence of mechanisms of installation of the prices on assets into 
each from segments, it is possible to assume that the independent Wiener 
processes generate the equilibrium processes of the short-term interest rates 
inside of various segments. Consider no arbitrage conditions in this case. 

Still we shall assume, that in the financial market there is traded the 
zero coupon bonds with maturity dates that form a set {Tj, 1 ≤ j ≤ n}. Let's 
assume also, that this maturity set is divided on m of nonintersecting 
segments Τk, 1 ≤  k ≤ m, m < n. Inside  k-th of segment the actual short 
interest rate rk(t) follows the stochastic differential equation 
 

drk(t) = µkr(r(t), t) dt  + σ kr(r(t), t) dWk(t),  1 ≤  k ≤ m.    (19) 
 
According to this the yield of the bond with maturity date Tj ∈ Τk is 
determined by the stochastic differential equation  
 

( )
( )

( ) ( ) ( ) ( ) (tdWtrdttr
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Under the inflation instead of the actual interest rate rk(t) in the equation 
(20) it is necessary to use the nominal interest rate Rk (t) = (1 + rk(t))(1 +  
i(t)) − 1, where the rate of inflation varies according to process (7). In this 
case equation (20) should be modified to a form (8) - (11), taking into 
account a stochastic behavior of the rate of inflation. As the purpose of the 
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present section is to find a no arbitrage for the segmented market, we shall 
not take into account inflation.  

As well as until now we assume, that the investor makes a portfolio of 
the bonds of value S(t) purchasing Nj  bonds with maturity term Tj  on the 
price P(t,Tj) so that Sj = Nj P(t,Tj), 
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Using method, which was used in the previous sections, it is possible to 
obtain an increment of this portfolio value of the bonds for an infinitesimal 
time interval as 
 

dS(t) ,      (21) ( ) ( ) ( ) ( ) (∑ ∑∑∑
= = ==

+=
n

j
kj

m

k

n

j
k

j
kjjk

j
m

k
kj tdWStrIdtStrI

1 1 11
,, σµ )

 
where Ikj is the indicator 
 

⎩
⎨
⎧

∉
∈

=
.,0
,,1

kj

kj
kj Tif

Tif
I

Τ
Τ

 

 
Again for deriving of the risk-free profit it is necessary, that {Sj} were 
selected so that the stochastic terms in (21) were equal to zero. Therefore 
we have m conditions of risk-free deriving of interests 

 
( ) ( )( ) 0,

1
=∑

=

n

j
jk

j
kj StrI σ ,         1 ≤ k ≤ m.                          (22) 

 
The equalities (22) are the existence conditions of risk-free self-

financed portfolio. As well as in the previous section in order to obtain the 
no arbitrage condition, it is necessary to add a demand that the self-
financed portfolio can earn inside each of m market segments only at the 
risk-free interest rate rk(t), 1 ≤ k ≤ m, i.e. 
 

( ) ( ) ( )∑ ∑∑∑
= == =

=
n

j
jk

m

k
kj

n

j
jk

j
m

k
kj StrIStrI

1 11 1
,µ , 

hence 
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( ) ( ) ( )( 0,
1 1

=−∑∑
= =

n

j
jkk

j
m

k
kj StrtrI µ ) .                                    (23) 

Thus the no arbitrage condition is held if for any set {Sj} the equalities (22) 
and (23) are simultaneously fulfilled. In vector-matrix notation this means  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
...

,...,
..........

,...,

,...,

2

1

1

11
1

1

1

1
1

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−− ∑∑

==

n
m

n
m

n

kk
n

m

k
knkk

m

k
k

S

S
S

trtr

trtr

trtrItrtrI

σσ

σσ

µµ

. 

 
Because this equality must be fulfilled for any {Sj} therefore determinant of 
matrix must be equal to zero. Then the rows of matrix are linear dependent, 
i.e. 

( ) ( ) ( )( )∑
=

−
m

k
kjkk

j Itrtr
1

,µ = ,  1 ≤ j ≤ n.      (24) ( ) ( ) ( )∑
=

m

k
kjk

j
kk Itrtr

1
,, σλ

 
As the bond with some specific maturity date Tj can belong only to one 
segment, the sums in equality (24) contain only a single nonzero term for 
this maturity. Let us determine a set J of pairs (j, k) for witch Ikj =1, i.e.     
(j, k) ∈ J if a security with maturity date Tj is traded at the k-th segment of 
financial market. Then we can formulate the no arbitrage condition in the 
form 

Proposition 2. The no arbitrage conditions are held in the segmented 
market if for each (j, k)∈ J the equality is fulfilled  

 
( ) ( )

( ) ( )
( )tr

tr
rtr

kk
k

j
kk

j
,

,
,

λ
σ

µ
=

−
. 

 
It means, that for each segment of the financial market there is a 

market price of risk, identical for the bonds of all maturity dates of this 
segment, but in general various for various segments. 
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4. The no arbitrage condition for multi-factor models 
 

In multi-factor models of a term structure of the interest rates it is 
supposed that the price P is some function of several state variables of 
interest rate (two factor model see Moreno (1996) or Richard (1978), 
general case see Duffie and Kan (1992)).  Process of the short interest rate 
is determined as a vector stochastic process that is determined by a system 
of the stochastic differential equations concerning a m-vector ( )tr  with 
components rk(t), 1 ≤ k ≤ m, 
 

( )trd  = ( tr , )µ dt + ( )tr ,σ dW(t),                                      (25) 
 
where ( tr , )µ  is a m-vector of a drift with components µk(rk, t), ( tr , )σ  is 
(m×q)-matrix of volatilities with components σ kl(rk, t), 1 ≤ k ≤ m, 1 ≤ l ≤ q, 
W(t) − q-dimensional stochastic process with components that are scalar 
independent standard Wiener processes Wl(t). It should be noted that one of 
component of vector r could be the rate of inflation. In these conditions the 
stochastic differential equation for the price P( ,r t, Tj) of the zero coupon 
bond with maturity term Tj has a form 
 

( ) ( ) ( ) ( ) ( )tdWtdtt
P

dP jj

j

j σµ += ,                                       (26) 

 
where the simplified designations Pj = P( ,r t, Tj) are used, and 
 

( ) ( ) ( ) ( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
= trtr

r

P
trtr

r
P

t
P

P
t Tjjj

j

j ,,
2
1,1

2

2

σσµµ ,     (27) 

 
( ) ( ) ( tr

r
P

P
t j

j

j ,1 σσ
∂

∂
= ) ,                                                                  (28) 

It should be noted for clearness that here 
r

Pj

∂

∂
 is the row vector with 

components 
k

j

r
P
∂

∂
, 1 ≤ k ≤ n, and 2

2

r

Pj

∂

∂
 is the (n×n)-matrix with elements 
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ki

j

rr
P
∂∂

∂ 2

, 1 ≤  i, k  ≤ n; tr (A) designs a trace of matrix A. 

Again we assume, that the bonds of n various maturities Tj, 1 ≤ j ≤ n, 
are accessible for the investor to draw up a self-financing portfolio of value 
S(t). In each instant he uses the sum Sj to purchase the bonds with maturity 
term Tj on the price Pj. The increment of value of such portfolio of the 
bonds for an infinitesimal time interval is determined by equation 
 

dS(t) = ∑
=

n

j
j

j

j S
P

dP

1
 = ( ) ( ) ( ) ( ) ( )( )∑

=
+

n

j
j

jj StdWtdtt
1

σµ  = 

 

( ) ( ) ( ) ( ) ( )tdWStdtSt
n

j
j

j
n

j
j

j
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

== 11
σµ .                     (29) 

 
For deriving of the risk-free profit it is necessary that it is fulfilled the 
equalities 
 

( ) ( ) 0
1

=∑
=

n

j
j

j Stσ .                                                               (30) 

 
The no arbitrage condition implies the addition to (30) the demand 

that the self-financed portfolio earns with the risk free nominal interest rate 
R(t), i.e. 

( ) ( ) ( ) ( ) ( )∑∑
==

==
n

j
j

n

j
j

j StRtStRSt
11

µ .                                 (31) 

 
Combining the equations (30) and (31) gives the systems  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ −−−

n
n

qqq

n

n

S

S
S

ttt

ttt
tRttRttRt

...
...

............
...
...

2

1

21

1
2

1
1

1

21

σσσ

σσσ
µµµ

 = 0. (32) 

 
This system must be satisfied for any admissible {Sj} therefore 

determinant of matrix must be equal to zero. It means that the rows of 
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matrix are linear dependent. This allows formulating the no arbitrage 
condition as 

Proposition 3. In order to the no arbitrage conditions are held in the 
financial market that is described by multi-factor model (25) − (26) it is 
necessary that the following equalities be fulfilled 

 
( ) ( ) ( ) ( ) ( ) (∑

=
=−

q

l
l

j
l

j rtttRt
1

,λσµ ),      1 ≤ j ≤ n.             (33) 

 
The variables λl(t, r ), 1 ≤ l ≤ q, in expression (33) make sense of the 
market prices of risk because of a stochastic behavior l-th component of 
stochastic term of factor increment in the equation (25). 

The substitution in equality (33) the expressions for µ(j)(t) and σ (j)(t) 
in the forms (27) and (28) gives after appropriate rearrangement the partial 
differential equation with respect to price P( ,r t, Tj). 
 

5. Some important special cases 
 

It should be noted that in literature the special cases are often occurred 
where the bond prices depend on some factors only through the single 
variable. This variable is usually the nominal interest rate. Above in 
Section 2 such example was presented. The other examples are described in 
Langetieg (1980), Cox, Ingerssol, and Ross (1985), Chaplin (1987),  
Longstaff and Schwartz (1992), Chaplin and Sharp (1993) (see also Duffie 
and Kan (1992) and Vetzal (1994)). For these cases it is possible to assume 
that the nominal interest rate R(t) is determined by factors rk(t), 1 ≤  k ≤ m, 
as the weighted sum  R(t) = a ( )tr  = ( )tram

k kk∑ =1 . Then the price of the 
discount bond is determined for maturity date T is described by function 
P(R, t, T). At the same time the case considered is a special case of the 
multi-factor model and the results of previous section are valid here too. 
Therefore the equation (26) is right here also but designations (27) and (28) 
can be made more specified.  

 

( ) ( ) ( ) ( ) ( )( )[ ]
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
= Tjjj

j

j tratra
R

P
tra

R
P

t
P

P
t ,,

2
1,1

2

2

σσµµ ,   (34) 
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( ) ( ) ( tra
R
P

P
t j

j

j ,1 σσ
∂

∂
= ) ,                                                  (35) 

 
where a = (a1 a2 … am) is a row vector, Pj = P(R, t, Tj),  and the 

(mathematical) derivatives 
R
Pj

∂

∂
 and 2

2

R

Pj

∂

∂
 are scalars. Then the expression 

(33) can be written in a form 
 

( ) ( ) ( ) ( ) ( trtra

R
P

P

tRt
j

j

j
,,

1
λσµ

=

∂

∂
− ),      1 ≤ j ≤ n.                    (36) 

 
Here ( tr , )λ = ( ( )tr ,1λ  ( tr ,2 )λ  … ( )trq ,λ )T is a column vector of the 
market prices of risk because of a stochastic behavior components of 
stochastic term ( tr , )σ dW(t) of factor increment in the equation (25). Note 

that 
R
P

R
P

P
jj

j ∂

∂
=

∂

∂ ln1 . Thus we derive the following interpretation of the 

relation (33). 
Proposition 4. The no arbitrage condition for bond pricing states that 

the excess of expected bond’s return µ(j)(t) over the nominal interest rate 
R(t) divided by the (mathematical) derivative of logarithm of bond’s price 
Pj with respect to the nominal interest rate R = R(t) is independent of the 
bond’s maturity Tj. 

The relation (36) is the base to formulate the partial differential 
equation for the bond price P(R, t, Tj). For this it is sufficient to substitute 
the explicit form µ(j)(t) from (34) and to rearrange the terms of obtained 
expression. However it should be noted that the bond price will have the 
form P(R, t, T) if only expressions [a ( )tr ,µ ], [a ( )tr ,σ (a ( tr , )σ )T], and 
[a ( )tr ,σ ( tr , )λ ] are the functions of R(t) = a ( )tr . This is possible for 
example if  a, ( )tr ,µ , ( )tr ,σ , ( )tr ,λ  are determined in the following way 

a − a row vector with components  ak = 1, 1 ≤ k ≤ m; 
( tr , )µ  − a vector with components (α rk(t) + βk), 1 ≤ k ≤ m; 
( tr , )σ  − a diagonal matrix with elements ( ) kk tr δσ + ,1 ≤ k ≤ m = q; 
( tr , )λ  − a vector with components ( ) kk tr δλ + , 1 ≤ k ≤ q = m. 
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At these functions the solution P(R, t, T) of the bond price equation 
belongs to the affine class. As illustration of this version we shall note that 
it is usual in the markets of stable economy the values of the short interest 
rate r(t) and the rate of inflation i(t) are rather small, and it is possible to 
use linear approximation of formula (5) (Воdiе еt al., 1996) 

 
R(t) ≈ r(t) + i(t).                                                                               (37) 

 
In this case m = 2,  r1(t) =  r(t),  r2(t) = i(t).  

The question, whether there are other possible ways of determination 
of these functions to ensure the solution of the bond price equation in the 
form P(R, t, Tj), remains open. 
 

Conclusions 
 

It is known that in financial market there is no arbitrage if and only if 
there exists an equivalent martingale probability measure (Duffie, 1992). 
This condition is rather general but difficult checked because at present the 
problem of construction of equivalent martingale (risk-neutral) measure is 
waiting for its solution. Therefore deriving of the no arbitrage conditions in 
the explicit form, without resorting to construction of equivalent martingale 
measure, is useful. This paper has presented some cases when this manages 
to be made in financial market where the discount bonds with some 
arbitrary number of maturities are traded.  
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