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Summary 

 
The successful investment policy is an integral part of successful activity of the 

insurance company. The return to the shareholders of the insurance company usually 
thought of as comprising the underwriting result and investment income. The 
investment income is very important even for an insurance company, which writes 
mainly a short tail business. For the successful activity the insurance company needs 
the appropriate investment policy as well as in good investment control.  

For this purpose knowledge of the analysis of processes of a behavior of the 
various interest rates represents large interest. Recently many authors use the 
stochastic differential equations for description of processes of a development of a 
various sort of the interest rates. As it is known, solutions of such equations are the 
Markov processes and the observations of these processes in discrete instants will 
form time series circumscribed by autoregressive models of the first order. They are 
popular among those, who are interested in the analysis of financial data. In this 
connection it is useful to know about that as far as the models with real data will be 
precisely matched. In the present paper such problems with the special attention to the 
correspondence of correlation properties of real financial data to correlation properties 
of processes generated by autoregressive models are considered.  

The 12 time series of the following financial data were exposed to a research 
UK Share Price, Dec 1918 - Jun 1995 (919 monthly values). UK Dividend Yield Rate 
for Shares, Dec 1918 - Jun 1995 (919 monthly values). UK Retail Prices Index, Jun 
1900 - May 1995 (1145 monthly values). UK Wages Index, Jun 1920 - Apr 1995 (904 
monthly values). Internal Rate of Yield on UK 2.5% Consoles, Jun 1900 - Jun 1995 
(1146 monthly values). US Treasury Securities, Jan 1991 - Dec 1995 (for 1250 
business days): Short-term debt instruments (the 3-month’s Bills); Medium-term debt 
instruments (the 3-year’s Notes); Long-term debt instruments (the 30-year’s Bonds). 
Currency Exchange Rates, Jan 1991 - Dec 1995 (for 1700 business days): Swiss 
Franc versus US $; German Mark versus US $; British Pound versus US $; Japanese 
Yen versus US $. 

The analysis has revealed correlation properties of investigated time series of 
financial data and has shown, that real financial data have other correlation properties 
than their autoregressive models. 
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1. Introduction 
 
  1.1 The successful investment policy is an integral part of successful activity of an 
insurance company. The return to the shareholders of the insurance company is 
usually thought of as comprising the underwriting result and investment income. The 
investment income is very important even for an insurance company, which writes 
mainly a short tail business. The appropriate investment policy as well as good 
investment management are required for the successful activity of the insurance 
company. Knowledge of the analysis of processes of a behavior of the various interest 
rates is very interesting for this purpose. The various aspects of this problem have 
been considered in such widely known papers as Boyle (1980), Wilkie (1986, 1995), 
Tilley (1992), Vetzal (1992) etc., and also in common actuarial text-books (see for 
example, Hart, Buchanan & Howe (1996)).  
 
  1.2 It is interesting to know not only mathematical models of description of 
dynamics of the interest rates, but also and properties of these processes, which would 
allow to make in this or that measure the successful forecast of such dynamics. As it 
follows from the references on this problem by the most popular mathematical models 
of dynamics of the interest rates and derivative financial performances, depended on 
them, are the stochastic differential equations (for the analysis in continuous time) 
and Markov chains or autoregressive models (for the analysis in discrete time). The 
financial data are quoted in discrete time and are represented in the form of a time 
series. For an investigation of dynamic properties it seems more preferable to use the 
autoregressive models.  
 
  1.3 The temporal dependence between values of time series is very important for the 
purposes of prediction. The simplest forms of expression of such dependence are the 
correlation connections. The correlations are enough easily calculated by sample data. 
In the mean square theory of a prediction the optimum procedures of forecast are 
determined just through correlation properties of observable processes. A research of 
correlation properties of financial time series therefore is of interest, and also 
correlation properties of those mathematical models, which are taken for description 
of these financial time series. 
 
1.4  The purpose of this paper is to present to the persons of the actuarial profession 

the features of correlation properties of the time series, which are generated by the 
autoregressive models, and to check up, how a time series of real financial data satisfy 
to these correlation properties. The 12 time series of the following financial data were 
exposed to a research 

1)  UK Share Price (more exactly the value of the all-share index without 
reinvestment of dividends), Dec 1918 - Jun 1995 (919 monthly values). 
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2)  UK Dividend Yield Rate for Shares, Dec 1918 - Jun 1995 (919 monthly 
values). 

3)  UK Retail Prices Index (rate of inflation), Jun 1900 - May 1995 (1145 
monthly values). 

4)  UK Wages Index (rate of wage inflation), Jun 1920 - Apr 1995 (904 
monthly values). 

5)  Internal Rate of Yield on UK 2.5% Consoles, Jun 1900 - Jun 1995 (1146 
monthly values). 

6)  US Treasury Securities, Jan 1991 - Dec 1995 (for 1250 business days): 
6.1) Short-term debt instruments (the 3-month’s Bills); 
6.2) Medium-term debt instruments (the 3-year’s Notes); 
6.3) Long-term debt instruments (the 30-year’s Bonds). 

7)  Currency Exchange Rates, Jan 1991 - Dec 1995 (for 1700 business days): 
7.1) Swiss Franc (SFr) versus US $; 
7.2) German Mark (DM) versus US $; 
7.3) British Pound (BP) versus US $; 
7.4) Japanese Yen (Y) versus US $. 
                    

2. Autoregressive Models and Stochastic Differential Equations 
 
  2.1 An observed financial time series  X1, X2, ... , X n  can be thought of as a sample 
realization of a stochastic process. However, all real processes, explicating in a nature 
and community, vary in continuous time irrespective of the fact, which the 
mathematical models identify them. The processes circumscribing a conjuncture of 
the financial market are not elimination. Therefore it is necessary to set the more 
exact accordance   between the mathematical models of the time series (process with 
discrete time) and the stochastic process in the continuous time. The most popular 
mathematical models of the stochastic processes in the continuous time are the 
stochastic differential equations that can be written as 
 

dx = µ(x,t) dt + θ(x,t) dW(t)  
 

where µ(x,t) and θ(x,t) are the continuously differentiable deterministic functions of 
its arguments; W(t) is a standard Wiener process. In accordance with the Doob (1953) 
theorem in these conditions the stochastic process  x(t)  is a Markov process. For our 
purposes it is sufficient to consider a more simple case of the linear stochastic 
differential equation when 
 

dx = (a(t) x + b(t)) dt + c(t) dW(t)                                                  (1) 
 

where a(t) , b(t) , and c(t) are again the continuously differentiable deterministic 
functions. Note that the stochastic process  x(t)  in these equations can be both a scalar 
and a vector process. Consider the more general case of vector process x(t). In this 
case a(t)  and  c(t)  are  the matrix functions of the appropriate dimensions and b(t)  is 
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the vector of the dimension of the vector x(t). The solution of the equation for this 
case can be written in the form (more exactly, the solution is stochastically equivalent 
to following stochastic process) 
 

( ) ( ) ( ) ( ) ( ) (x t U t s x s U t v b v dv s t
s

t
= + +∫, , ξ ),                                     (2) 

 
where x(s)  is given initial vector of  process at time  s ; U(t,s)  is  the fundamental 
matrix of the solution (FMS) of the homogeneous deterministic system 
 

( ) ( )dx
dt

a t x t=  

 
with initial condition  x(s)  at time s . ξ(s,t)  is  the random vector with the zero mean 
and the correlation matrix  

( ) ( ) ( ) ( )U t v c v c v U t v dvT T

s

t
, ,∫ . 

 
  2.2 It is convenient to transform the solution to some different and more useful form. 
For it we introduce some new notation. Because the correlation matrix is the positive 
definite matrix then it is possible to introduce the other positive definite matrix  σ(s,t)  
by the relation 
 

( ) ( ) ( ) ( ) ( )σ 2 s t U t v c v c v U t v d vT T

s

t
, , ,= ∫ . 

 
Let us designate 
 

z(t) = ,     Z(t) = x(t) − z(t) .                                     (3) ( ) ( )U t v b v dv
u

t
,∫

 
As the matrix U(t,s) has a property of a factorization U(t,s) = U(t,v)U(v,s)  for any  t, 
s, and  v,  it is possible to write for any  u (concerning a parameter u it will be told 
below) 

 

( ) ( )U t v b v dv
s

t
, =∫  z(t) − U(t,s) z(s) . 

 
Using the new notation the solution (2) of system (1) can be represented in the form 
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Z(t) = U(t,s) Z(s) + σ(s,t) V(t)                                                          (4) 
 

where  V(t)  is  the normal random vector that has the following expectations 
 

E{V(t)} = 0,  E{V(t) VT(t)} = I , E{V(t) VT(s)} = 0 ,  for any  t ≠ s , 
 

where  I  is the identity matrix.  
 
The solution of the equation (2) in the form (4) is similar of the many-dimensional 
autoregression with the variable coefficients. Make this similarity more evident. For it 
consider a particular case of the constant matrix coefficients in the equation (2). That 
is  a(t) , b(t) , and c(t) are independent on  t . In this case FMS is a matrix that depends 
only on the single argument,  U(t,s) = U(t − s)  and   σ(s,t) = σ( t − s) .  
 
  2.3  Let us assume, that the values of process that is determined by equation (2) only 
in the discrete instants from some subset are accessible to observation. Let this subset 
is  {ti | i = 1, 2, ... ; ti+1 − ti = h  for any  i} . And let us put  Z(tk) = Zk , V(tk) = Vk . 
Then  (4) can be written in the form 
 

  Zk = U(h) Zk−1 + σ(h) Vk                                                                (5) 
 

that is the many-dimensional (vector) autoregression. Let us note, that as the matrix 
U(h) is nondegenerate and E{Vk} = 0 for any  k, from (5) follows, that  E{Zk} = 0. 
Returning to initial notation  x(t) = z(t) + Z(t)  and  setting  x(tk) = Xk ,  we see that this 
is equivalent to equality  
 

E{Zk} = E{Xk} - z(tk) = 0     or     E{Xk} =  z(tk) 
 
If the matrix  

( ) ( )U t U t dtT

0

∞

∫  

exists then such stochastic process is stationary. In this case it is relevant to consider a 
sense of the function z(t) in (3). In a common sense the integral z(t) under the lower 
limit of integration  u = − ∞  gives the expectation of the stationary process in the 
form 
 

z(t) =  = µ ( ) ( )U t v bdv U s bds
t

− =
−∞

∞

∫ ∫
0

 
In alternative case the lower limit of integration  u can be considered as the initial 
instant of development of process then the function  z(t)  can be considered as 
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expectation of process of an establishment to a stationary average value, that can be a 
trend of an stochastic process. 
 
Thus for a stationary process the relation (5) can be rewritten by the initial notation as 
 

Xk =  µ  + U(h)( Xk−1 − µ)  + σ(h) Vk                                              (6) 
 
When the dimension of model  n  is equal to 1, all above-stated relations become 
scalar as well as all terms of the equations of a autoregressive models (5) and (6).  
 
  2.4 As an example we shall consider widely known the Wilkie (1986) investment 
model that describes the stochastic behavior of the inflation process. On this model 
the U. K. Retail Prices Index  Q(t), based on annual ( h = 1 ) data from the period 
1919 to 1982, will form the time series for the force  I(t) = ln (Q(t)/Q(t-1))  of 
inflation over the year (t-1,t) 
 

I(t) = 0.05 + 0.6×(I(t−1) − 0.05) + 0.05×V(t)                                (7) 
 

where V(t)  is a series of independent, identically distributed unit normal variables, 
i.e. E{V(t)} = 0 , E{V 2(t)} = 1 , and  E{V(t)V(s)} = 0  t ≠ s . For this case  
 

U(h) = e− ah = 0.6,  z(t) =  µ  = b/a = 0.05 ,  ( ) ( )σ h c e aah= − =−1 22 / 0 05. , h = 1. 

 
Hence the stochastic differential equation (1) that corresponds to this autoregression 
takes the form 
 

dx = (− 0.511 x + 0.0255) dt + 0.0632 dW(t) 
 

  2.5 Other the Wilkie (1995) investment model is two-dimensional. It is an 
autoregressive model in that the force of the wage inflation J(t) over year (t − 1, t) is 
added to the force of  the inflation I(t). Then for  ( ) ( )~I t I t I= − µ    and   

( ) ( )~J t J t J= − µ  the autoregressive model had been obtained by Wilkie in the form 
 

( )
( )

( )
( )

( )
( )

~
~

. .

. .

~
~

. .

. .
I t
J t

I t
J t

V t
V t

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

01817 05927
01724 05618

1
1

0 0382 0 0142
0 0142 0 0303

1

2
            (8) 

 
where  µI  =  0.0359  and  µJ  =  0.0509, and  V1(t) , V2(t) are independent, identically 
distributed unit normal variables, i.e. E{Vk(t)} = 0, E{Vk 2(t)} = 1 for  k = 1,2 and   
E{V1(t)V2(t)} = 0 for any  t . In this case the fundamental matrix is 

 192



( )
( )

( )U t
e e e e

e e e e

t t t t

t t t t=
× + × × −

× − × + ×

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 2445 9 5173 0 7970

0 2318 0 2445 9 5173

. . .

. . .

λ µ λ µ

λ µ µ λ  

 
where  λ = − 0.2962 , µ = − 20.6248 . 
 
The stochastic differential equation (1) that corresponds to the two-dimensional 
autoregression (8) takes the form 
 

( )
( )

( )
( )

dI
dJ

a
I t
J t

b dt c
dW t
dW t

~
~

~
~

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜

⎞

⎠
⎟1

2
, 

where 

a =
−

−
⎛
⎝
⎜

⎞
⎠
⎟

33812 32547
0 9465 17 5398

. .
. . ,      b ,      . =

⎛
⎝
⎜

⎞
⎠
⎟

0 05335
0 00381
.
. c =

⎛
⎝
⎜

⎞
⎠
⎟

0 01495 0 02038
0 00185 0 00252
. .
. .

 
  2.6 Thus, we see, that the use of observations of a process x(t) , that is a solution of 
the stochastic differential equation in discrete instants , results in the autoregression  
model of the first order. According to the theorem of the Doob the time series 
generated by such model make up a Markov process. The other theorem of the Doob 
(1953) states, that the scalar stationary stochastic process is Markov one if and only if 
its correlation function is exponential. It means that for the time series that are 
generated by the stochastic differential equations should have a property 
 

C(u) = { } { } { }Cov X X Var X Var Xk k u k k u+ / + =  exp{−ρ u }     ,  u ≥ 0 .         (9) 
 

where the positive parameter ρ is determined in appropriate way. In a consequence 
we shall take advantage of these properties for the analysis of a goodness of fit of 
financial time series to models of an autoregression. 
 

3. Some notes about the stationary and correlation properties of autoregressive 
processes 

 
  3.1 More often authors deal with stationary models of financial time series when the 
factors of a model are constant. This model generates the stationary (of second order) 
time series  Xk ,   that has properties 
 

E{Xk
2} < ∞ ,  E{Xk} = m ,  E{XkXk+u} = f(|u|) 

 
for all k, u = 0, ±1, ±2, .... Note that  the stationarity properties are always determined 
for infinity index set and are used for theoretical analysis while the time series 
observed in practice are given for finite index set. Therefore for practical use the 
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stationarity properties should be modified. In practice the situation becomes more 
complicated as the systematic and seasonal components can be added to a stationary 
time series. Usually the first step in the analysis of real time series is to plot the data. 
This provides to make the classical decomposition of time series on three components 
(see for example Brockwell & Davis (1987)):  
 

mk + sk + Xk
 
a slowly changing function (trend component)  mk , a seasonal component sk , and a 
random component  Xk . The trend component can include both a systematic 
deterministic component and a slowly changing random component of stationary time 
series. If a observation time period is less than a seasonal cycle then seasonal 
component  sk can be included too into the trend mk . Thus even if the systematic and 
seasonal components are absent then a trend component mk can be determined as a 
slowly changing random component. In this case decomposition is rather conditional. 
Later under an analysis of real financial data we take such decomposition. The 
random component  Xk is usually considered as a realization of the stationary process 
and often described as an time series generated by the autoregressive model. 
 
  3.2 Most often used model is an autoregressive-moving average (ARMA) model. 
ARMA(p,q) - the autoregresive-moving average model of degree (p,q) generate a 
stationary time series  Xk by following difference equation 
 

X a X b Vk i k i
i

p

j k j
j

q
= +−

=
−

=
∑ ∑

1 0
 ,  k = 0, ±1, ±2, ....                    (10) 

 
where  ai and  bj  are constant and  Vk  is a standard white noise process,  E{Vk} = 0 ,        
E{Vk

2} = 1,  E{VkVk+u} = 0 , u ≠ 0. Note that if some time series Yk is a linear 
transformation of another time series Xk  that is an ARMA process then  Yk  is an 

ARMA process too.  For example if  Y c  where  XXk t k
t

r
= −

=
∑

0
t k  is an ARMA(p,q) 

process generated by  (10) then  the time series  Yk  is  the ARMA(p,q+r) process 
 

Y a Y d Vk i k i
i

p

j k j
j

q r
= +−

=
−

=

+

∑ ∑
1 0

 ,  k = 0, ±1, ±2, ....                    (11) 

 
 where the coefficients  dj  are easy determined by  bj  and  cj . It is important for 
example to analyze of the yield to maturity. The yield to maturity is a measure of the 
average rate of return that will be earned on a bond if it is bought now and held until 
maturity. If the underlying short interest rate Xk  is generated by the ARMA(1,0) (i.e. 
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AR(1)) process as often it is assumed then the yield to maturity Yk  for a default-free 

mple Brockwell & Davis (1987)). We will represent here the 
most simple cases that are necessary for our purposes. For the AR(1) (i.e. 
ARMA(1,0)) pro

 
 + σVk

the correlation fu
 

 E{Xk Xk+u }/ 

discount bond maturing in time T is generated by the ARMA(1,T) process.  
 
  3.3 There are some methods to calculate the correlation function of the ARMA(p,q) 
processes (see for exa

cess  

Xk = aXk−1
 

nction is  

{ } { }E X E Xk k
2 2

+C(u) = u =  au ,  u > 0 . 

 
For the AR(2) pro
 

k−1 + a2Xk−2 + σVk
 

the correlation function is 
 

cess 

 Xk = a1X

( )
( ) ( )

( ) ( )C u
g g g g

g g g g− − −2 1 1 21 1
 
where  g

u u

=
− − −− −

2
2

1
1

1
2

2
1

2 2

1 1
 , u > 0 .                               (12) 

 a2g  = 0 (for 
tationary time series these roots are  |gk| > 1, k = 1, 2). If these roots are complex 

conjugate,   g1 = fe−iϕ  and   g2 = feiϕ ,  then this form is transforming to 
 

1 and  g2  are the different roots of the equation  1 − a1g − 2

s

( ) ( )
C u f

u f
f −sinψ 2 1

 
Thus for all time series, that are generated by the AR(1) models with positive 
coefficient  a , the correlation functions are a positive monotone decrease functions. 
This follows also from the properties of stochastic differential equations that generate 
the Markov processes (see 2.6 above). Conversely if the correlation function of some 
time series takes the negative values then such time series can not b

u=
+

=
+− sin

, tan tan
ϕ ψ

ψ ϕ
2 1

.     (13)

e generated by the 
R(1) model. It means too that the processes, which are observed by these time 

eries, cannot be generated by the stochastic differential equations. 

 
 

 

A
s
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4. Real Financial Data Analysis 
 
  4.1 The analysis of real financial data was made uniformly for all time series (with 

all e
• 
• 

t the approximation of time series by the method of least 
squa ut in all 
necessary cases. 

 + b6k6 ,   k = 0, 1, 2, ... , N − 1 , 

where  
• ffer 

• 
t (trend) mk . Thus 

• rs of an autoregression of models of a type AR(1) and AR(2) were 

• 

 random function 

• submitted as the graphs of time series, trends and correlation 
functions. The factors of autoregressive models and trends are submitted in the 

 the AR(1) (a = 0.1193) and AR(2) (a1 = 0.1273, a2 = − 
0.0689) models for this time series and the theoretical and sample correlation 
functions (on Figure 2). 

sm xceptions) and was carried out under the following design:  
The plot was constructed for full volume of series. 
The slowly changing component (the trend)  mk  was selected. In the capacity 
of this componen

res in the form of a power polynomial of the sixth order got o

mk = b0 + b1k + b2k2 + b3k4 + b5k5

 
N  is the series length (sample size). 
As some authors (see e.g. Black & Karasinski(1991), Tilley (1992)) o
instead of initial time series to consider a series composed from logarithms of 
data therefore such series were investigated in the considered analysis too. 
The random component of time series  Xk  was determined as a residual 
between an initial series and slowly changing componen
obtained time series (initial and residual) were considered as process of an 
autoregression which was subject to the further analysis.  
The facto
determined for initial time series and series of residuals on a method of least 
squares.  
The correlation functions for time series were calculated on base of theoretical 
relations (see above 3.3) for the autoregressive models and the sample 
correlation functions. Because of the coefficients of trend functions were 
calculated by sample data the trend can be considered as a
too. Therefore the correlation functions of trends were also calculated. Then 
were made a comparison of all these correlation functions.  
The results are 

form of tables. 
 
  4.2 UK Share Price (more exactly the value of the all-share index without 
reinvestment of dividends), Dec 1918 - Jun 1995 (919 monthly values). About 
sources of these data see Appendix F of  Wilkie (1995). The general view of data is 
submitted on Figure 1. This Figure shows the logarithms of the relations the share 
price index (SPI) of month  k  to the share price index of  month  k − 1 where  k  is a 
serial number of month in a sequence of months from December 1918 till June 1995 . 
From figure it is visible, that the trend of transformed share price indexes is 
practically absent, therefore it was not investigated for these data. This time series had 
been considered very detailed by Wilkie (1995) therefore we bring only the 
autoregressive factors of
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Figure 1. The data about the Share Price Indices (SRI) that are transformed by relation 

( ) ( )(ln SRI k SRI k − 1 )  where k is the serial number of month of the sequence from 
December 1918 (k = 0) to June 1995 (k = 918). 
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Figure 2. The theoretical (AR1) and sample (REAL) correlation functions for the 
Share Price Indices data of Figure 1. 
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  4.3 UK Dividend Yield Rate for Shares, Dec 1918 - Jun 1995 (919 monthly values). 
About sources of these data see Appendix F of  Wilkie (1995). Note that this time 
series had been considered also detailed by Wilkie (1995). The general view of data is 
submitted on Figure 3. This figure shows the logarithms of the relations the dividend 
yield rate of month  k  to the dividend yield rate of  month  k − 1 where  k is a serial 
number of month in a sequence of months from December 1918 till June 1995 . On 
this figure the slowly changing component (trend) of these data is shown too.  
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Figure 3. The data about the Dividend Yield Rate for Shares (DYR) that are 
transformed by relation ( ) ( )(ln DYR k DYR k+ 1 )  where k is the serial number of 
month of the sequence from December 1918 (k = 0) to June 1995 (k = 918).  
 
Figure 4 shows some correlation functions for data of Figure 3. Among them the 
sample correlation function of the transformed dividend yield rate for shares (briefly 
called YIELD, note that this function repeats the graph on Figure 4.3 from Wilkie 
(1995)), the sample correlation function of the logarithms of the transformed dividend 
yield rate for shares (briefly called LN(YIELD)), the correlation function of the trend 
(TREND) and the theoretical correlation function of AR(1) model for data of Figure 
3. For these data the AR(1) model has the factor a = 0.9982 and the AR(2) model has 
the factors a1 = 1.1500, a2 = − 0.1521. Figure 5 shows the correlation functions for the 
residuals that are obtained by subtraction the trend from the sample data: the sample 
correlation function (REAL) and the theoretical correlation functions for AR(1) 
model (a = 0.9581) and AR(2) model (a1 = 1.1262, a2 = − 0.1753). 
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Figure 4. Correlation functions for data of Figure 3. 
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Figure 5. Correlation functions for the residuals of data of Figure 3. 
 
From these figures it is possible to note that the logarithm of data of Figure 3 has 
practically the same sample correlation function what has also data. Next the 
correlation function of the residuals of data after subtraction of trend can take the 
rather significant negative values though the correlation functions of the AR(1) and 
AR(2) models are always nonnegative. 
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  4.4 UK Retail Prices Index (rate of inflation), Jun 1900 - May 1995 (1145 monthly 
values). About sources of these data too see Appendix F of  Wilkie (1995). Note that 
this time series had been considered also very detailed by Wilkie (1986, 1995). The 
general view of data is not submitted here because of it had been represented on 
Figure 2.2 in Wilkie (1995). Here we represent on Figure 6 only the correlation 
functions for this time series: sample function (REAL, this function was more 
detailed represented on Figures 2.3 - 2.5 in Wilkie (1995)) and two theoretical 
functions for AR(1) and AR(2) models with the autoregressive factors  a = 0.4612 
and  a1 = 0.3334, a2 = 0.2770 respectively .  
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Figure 6. Correlation functions of monthly inflation. 
 
The sample correlation functions of the Retail Prices Index (rate of inflation) has an 
explicitly expressed seasonal component with a cycle 12 months. For creation  of an 
autoregressive model in this case it is necessary or to eliminate a seasonal component 
from initial time series (see 3.1) or to build a model of an autoregression of greater 
than 12th order. 
 
  4.5 UK Wages Index (rate of wage inflation), Jun 1920 - Apr 1995 (904 monthly 
values). About sources of these data too see Appendix F of  Wilkie (1995). This time 
series had been considered also by Wilkie (1995). The general view of data is not 
submitted here. Here we represent on Figure 7 only the correlation functions for this 
time series: sample function (REAL) and two theoretical functions for AR(1) and 
AR(2) models with the autoregressive factors  a = 0.3060 and  a1 = 0.2511, a2 = 
0.1735 respectively. The remarks about form of the sample correlation function in this 
case are the same as for previous one. The sample correlation functions of the Wage 
Index (rate of wage inflation) has an explicitly expressed seasonal component with a 
cycle 12 months. Therefore problem of a construction of an autoregressive model in 
this case is same as well as in previous. 
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Figure 7. Correlation functions of monthly rate of wage inflation. 
 
  4.6  Internal Rate of Yield on UK 2.5% Consols, Jun 1900 - Jun 1995 (1146 
monthly values). About sources of these data too see Appendix F of  Wilkie (1995). 
The general view of data is submitted on Figure 8. This figure shows the Internal Rate 
of Yield on UK 2.5% Consols as function of a serial number of month in a sequence 
of months from June 1900 till June 1995 . On this figure the slowly changing 
component (trend) of these data is shown too. 
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Figure 8. Consols yield and its trend as function of serial number  k of month  
               from June 1900 (k = 0) till June 1995 (k = 1145). 
 
Figure 9 shows some correlation functions for data of Figure 8. Among them the 
sample correlation function of the yield on consols (briefly called YIELD), the 
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sample correlation function of the logarithms of the yield on consols (briefly called 
LN(YIELD)), the correlation function of the trend (TREND) and the theoretical 
correlation functions of the AR(1) and AR(2) models for data of Figure 8. For these 
data the AR(1) model has the factor a = 0.9998 and the AR(2) model has the factors   
a1 = 0.9568, a2 = 0.0431. Figure 10 shows the correlation functions for the residuals 
that are obtained by subtraction the trend from the sample data: the sample correlation 
function (RES) and the theoretical correlation functions for AR(1) model (a = 0.9581) 
and AR(2) model (a1 = 1.1262, a2 = − 0.1753). 
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Figure 9. Correlation functions of consols yield. 
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Figure 10. Correlation functions for the residuals of data of Figure 8. 
 
The remarks about results represented on Figures 9 and 10 are same as well as in a 
ratio of results on Figures 4 and 5. The theoretical correlation functions decrease 

 202



essentially slower than the sample correlation functions. And the sample correlation 
function can take a negative values. 
 
  4.7  US Treasury Securities, Jan 1991 - Dec 1995 (for 1250 business days). Among 
them Short-term debt instruments (the 3-month’s Bills), Medium-term debt 
instruments (the 3-year’s Notes), Long-term debt instruments (the 30-year’s Bonds). 
These data had been taken from yield curve rates that are updated by the Internet 
(from address  gopher://una.hh.lib.umich.edu:70/00/ebb/monetary/yc/ycurve.tre). The 
general view of data is represented on Figure 11. This figure shows the US Treasury 
yield rates as functions of a serial number of business day in a sequence of business 
days from 2 January 1991 till 5 January 1996 . On this figure the slowly changing 
components (trends) of these data are shown too. 
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Figure 11. US Tresury yield rates (%) as the functions of serial number  k  of  
business day from 2 January 1991 (k = 0) to 5 January 1996 (k = 1250) for the 3-
month’s Bills (lower curve), the 3-year’s Notes (curve in a middle), and the 30-year’s 
Bonds (upper curve). The smooth curves are the relevant polynomial trends. 
 
The character of correlation functions for all variants of the yield rates is identical 
therefore for economy of a place we bring here only two figures of correlation 
functions. Figure 12 shows some correlation functions for data of Figure 11. Among 
them the sample correlation function of the yield rates for 30-year’s Bonds (briefly 
called RATE), the sample correlation function of the logarithms of these yield rates 
(briefly called LN(RATE)), the correlation function of the trend (TREND) and the 
theoretical correlation functions of the AR(1) model for data of Figure 11 (upper 
curve).  For these data the AR(1) model has the factor a = 0.9998. Figure 13 shows 
the correlation functions for the residuals that are obtained by subtraction the trend 
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from the sample data of the yield rates of the 3-month’s Bills (lower curve on Figure 
11): the sample correlation function (REAL) and the theoretical correlation functions 
for AR(1) model (a = 0.97898) and AR(2) model (a1 = 1.0739, a2 = − 0.09696). 
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Figure 12. Correlation functions for the yield rates for 30-year’s Bonds. 
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Figure 13. Correlation functions for the residuals of data  
for the 3-month’s Bills (lower curve of Figure 11). 

  4.8  Currency Exchange Rates, Jan 1991 - Dec 1995 (about 1700 business days). 
Among them British Pound (BP) versus US $, German Mark (DM) versus US $, 
Japanese Yen (Y) versus US $, and Swiss Franc (SFr) versus US $. The time series of 
these financial data had been received from the Trade System «Dow Jones Telerate». 
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The general view of data is represented on Figures 14 - 17. This figures show the 
Currency Exchange Rates as functions of a serial number of business day in a 
sequence of business days from January 1991 till  December 1995 . On this figures 
the slowly changing components (trends) of these data are shown too. 
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Figure 14. British Pound versus US $ as the functions of serial number  k  of  business         

day from 1 January 1991 (k = 0) to 31 December 1995 (k = 1728). 

1,3

1,4

1,5

1,6

1,7

1,8

1,9

0 250 500 750 1000 1250 1500
k , BUSINESS DAYS  

Figure 15. German Mark versus US $ as the functions of serial number  k  of  
business         day from 1 January 1991 (k = 0) to 31 December 1995 (k = 
1763). 
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Figure 16. Japanese Yen (divided by 100) versus US $ as the functions of serial 

number  k  of  business day from 1 Jan 1991 (k = 0) to 29 Dec 1995 (k = 1740). 
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Figure 17. Swiss Franc versus US $ as the functions of serial number  k  of  business 

day from 1 January 1991 (k = 0) to 29 December 1995 (k = 1697). 
 
Figure 18 for example shows some correlation functions for data of Figure 17. 
Among them the sample correlation function of the yield rates for exchange rates of 
SFr v. US $ (briefly called RATE), the sample correlation function of the logarithms 
of these exchange rates (briefly called LN(RATE)), the correlation function of the 
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trend (TREND) and the theoretical correlation functions of the AR(1) model for 
sample data of Figure 17.  For these data the AR(1) model has the factor a = 0.9999 
(see the Table below). For other data these correlation functions are similar. Figure 19 
shows only sample correlation functions for all four exchange rates. The data on 
factors of the AR(1) and AR(2) models of the exchange rates are shown in the Table 
together with factors of the AR(1) and AR(2) models of an autoregression for 
deviations of the exchange rates from their trends.  
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Figure 18. Correlation functions for exchange rate of SFr v. US $. 
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Figure 19. Sample correlation functions for exchange rates. 
 
Note that sample correlation functions is usually significant more dynamical than 
correlation functions appropriate to their AR models .  
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Table of coefficients of autoregressive models 

 
 SFr DM BP Y 

Rates   
AR(1), a 0,9999 0,9999 0,9998 0,9998 
AR(2), a1 0,9967 0,9760 0,9837 0,9384 
AR(2), a2 0,0032 0,0239 0,0161 0,0615 
Residuals     
AR(1), a 0,9801 0,9775 0,9857 0,9847 
AR(2),a1 0,9929 0,9709 0,9845 0,9343 
AR(2),a2 -0,0131 0,0065 0,0011 0,0512 
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Figure 20. Sample correlation functions for deviations of exchange rates from their 

trends. 
 
As well as in the previous cases the correlation functions appropriate to all 
autoregressions with factors from an above Table take only positive values 
monotonically decreasing to zero with increase of a lag. At the same time sample 
correlation functions both for exchange rates and for their deviations from a trend 
with increase of a lag confidently enter into a negative range of values (except the 
cases for BP and Y on Figure 19). 
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5. Conclusions 
 
Let us summarize conclusions, which were practically already made above. 
 
• The stochastic differential equations as the models of processes of the interest 

rates or their derivatives generate the Markov processes and bring to the 
autoregressive models of the first order. Let us note that the univariate 
stochastic differential equations can not bring to the AR(p) models (p > 1) or 
the ARMA(p,q) models (q > 0). 

• The autoregressive models of the first order generate the Markov sequences of 
data with exponential function of correlation taking only positive values. 

• The sample correlation functions of the considered time series of financial 
data have as rule a character of damping oscillations about a zero level taking 
both positive and negative values. 

• The correlation functions (13) for autoregressive models of the second order 
with the complex roots of a polynomial of an autoregression could have such 
character. However for the AR(2) models of the considered financial series 
these roots were found real and the correlation functions, appropriate to them, 
were also monotonically decreasing positive functions. Thus the 
autoregressive models of the real financial data allow only the positive 
correlation for any lags while the sample correlation for the same data can be 
both positive and negative. 

• The correlation dependence between values of the time series is very 
important for purposes of the forecast. In the mean square theory of a 
prediction the optimum procedures of forecast are determined extremely 
through correlation properties of treated data. Therefore the construction of 
the mathematical models of financial data that reflect correctly the correlation 
properties of these data  is very desirable. 

• Though the AR models are most appropriate for description of time series of 
financial data nevertheless the further researches are necessary for reaching 
their best goodness of fit to real data. 

 
Author intend to develop a relevant stochastic recurrent models of financial data and 
to use them for the forecast problems.  
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