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Abstract: Fuzzy classification models are one of the basic 

types of data mining models. The concepts of the 

simplicity and efficiency for fuzzy classifiers are 

introduced. We also introduced  the concepts of consistent 

and degenerate selfguesssing fuzzy classifiers. The 

Occam’s Razor principle for data mining models based 

on fuzzy classification algorithms is formulated. The 

quality criterion for degenerate selfguessing  fuzzy 

classifiers based on invariant simplicity measure is 

proved. The theorems on the conditions of improvement of 

degenerate selfguessing  fuzzy classifiers are  proved.  
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1. INTRODUCTION 

Classification models for transformation of 

information (classifiers) are one of the basic types of data 

mining models [1]. On the basis of such models a 

researcher can determine with the objects of which set 

(from a prefixed collection of sets L = (w 1 , w 2 , … ,w L )) 

he operates at a fixed moment of time.  

A comprehensive analysis of a broad range of existing 

classification models is presented in [2]. 

One of the possible directions in the development of 

classification models is connected with the theory of 

fuzzy sets. As L. Zadeh notes, the essential connection 

between such models and the fuzzy set theory is based on 

the fact that most of the real classes are fuzzy by their 

nature, i.e., transition from membership to not 

membership to these classes is rather gradual than 

discontinuous [3]. 

2. THE OCCAM’S RAZOR PRINCIPLE FOR DATA 

MINING MODELS BASED ON FUZZY 

CLASSIFICATION ALGORITHMS  

Let X (Card X = m) and L (Card L << m) be the 

fixed sets of objects of unspecified nature. Let’s denote be 

means of Y a family of all possible continuous functions 

translating L into a real-valued interval [0.1] (µ  Y   

µ: L → [0.1] and µ is a continuous function). The sets X 

and Y will be called further as sets of initial and finite 

symbols in the problem of fuzzy classification [4]. 

Let f be a target function from X to Y, f: X→ Y. Let’s 

also denote by Θ a collection of ordered pairs from X   

Y such that Θ = {(x i , y i )}
n

i 1 , x i  X, y i = f(x i ), y i  

Y, i = n.1 . The set Θ will be referred further as a 

learning set (for a function f) and a number n - as a power 

of a learning set Θ. 

Let G be an arbitrary fuzzy classification  algorithm to 

take an Θ into a hypothesis function h G  from X to Y, 

h G = G(Θ), h G : X→ Y. 

The construction process of an acceptable hypothesis 

function (model) is usually performed within some 

linguistic structure, which provides a symbolic 

representation of the set of potential classification models 

H. Let’s denote a set of all fuzzy classifiers, induced a 

family  models (functions) H by {G(Θ)}. Let’s  also 

define a fixed language Z  as a pair (I,T) where T is a set 

of sentences in the language, and I is interpreter I:T→H. 

On each t T we define a complexity measure  C : 

T→R (for the fixed language Z = (I,T)) which may 

represent either syntactic or semantic aspects of a 

sentence t. 

Under the fixed measure C we define the complexity 

C(h) for an arbitrary classification model(function) h G  

by the following rule: 

C(h) = 
htIt

tC

)(:

)(min
                              (1) 

In other words the complexity of classification model 

h depends on the language Z = (I,T) and is defined as the 

complexity of the simplest sentence which induced that 

model. 

Let Z = (I,T) be a fixed language, C : T→R – a fixed 

complexity measure (for a language Z),  X and Y – sets of 

initial and finite symbols in the fixed fuzzy classification 

(data mining) problem. 

Let also f correspond to a fixed (but unknown) target 

classification function and Θ = {(x i , y i )}
n

i 1 , x i  X , y i = 

f(x i ), y i  Y, i = n.1 - a learning set for this function of 

n power. 

Then, the Occam’s Razor principle for data mining 

models based on fuzzy classification model may be 

formulated as follows: 

Under otherwise equal conditions, favour such  the 

element G *
 {G(Θ)} that induces the simplest (in 

accordance the complexity measure (1)) fuzzy 

classification model h * = h
*G

, that 

G *   
}({

)}(min{





GG

hC G  

The main problem that arises when using this 

formulation is the ambiguity problem of simplicity 

(complexity) identification of a fuzzy classification model 

h H. The model that is simple in one linguistic structure 

may be a complicated one in another such structure. 

But, at least for one family of fuzzy classifiers the 

Occam’s Razor principle for data mining models based on 

such classification algorithms may be formulated by 

rigorously unambiguous way independently of the used 

language. 
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3. THE QUALITY CRITERION FOR 

DEGENERATE SELFGUESSING FUZZY 

CLASSIFIERS BASED ON INVARIANT 

SIMPLICITY MEASURE 

Let Θ = {(x i , y i )}
n

i 1  - be a learning set on n power 

for a target classification function f: X→ Y, G – a fuzzy 

classifier to take Θ into a hypothesis classification 

function h G  from X to Y, h G = G(Θ), h G : X→ Y. 

We’ll say that G is consistent with a learning set Θ iff 

the following relationship  is obeyed: 

h G (x i ) = y i , i = n.1 . 

Under fixed X, Y and Θ let’s denote a set of all 

possible fuzzy classifiers, consistent with Θ by Con(Θ).  

Let G be a fixed element from Con(Θ).We’ll say that 

G is a degenerate selfguessing for Θ [5] iff: 

A) G is consistent with any subset Θ *   Θ, such that 

Card Θ * = n * > n 0 -1 (n 0 - a fixed parameter, 

characterizing  the X set structure. In the case X = R m , 

n 0 = m+1). 

B) There exist a subset Θ '   Θ, Card Θ ' = n '   n 0 -1 

that is a function of G and Θ, Θ ' = Ф(G, Θ) so that: 

B.1) h 'G
(x) = h G (x),  x  Θ\ Θ ' ; 

B.2) if (x ' , y ' )  Θ ' , then 

Ф(G, Θ) = Ф(G, Θ\(x ' , y ' )). 

Under fixed X, Y and Θ let’s denote a set of all possible 

fuzzy classifiers, degenerate selfguessing for Θ by 

DSg(Θ). 

Let Θ 1 (Card Θ 1 = n 1 ) and Θ 2  = Θ 1   {( x , y )} (Card 

Θ 2 = n 2 = n 1 +1) be an arbitrary  learning sets for a target 

classification function f, f: X→ Y. 

Let’s assume that in Con(Θ 1 ) there are, at least, two 

different elements G 1 and G 2 .We’ll say that a fuzzy 

classifier G 2 is more effective than a fuzzy classifier 

G 1 (while moving from learning set Θ 1  to learning set 

Θ 2 ) and put down this fact as G 2   G 1 iff the following 

relationship is obeyed: 

P (h
12G ( x ) = y ) > P(h

11G ( x ) = y ),           (2) 

where P(•) is the probability of event (•). 

Let’s also suppose that in DSg (Θ 1 ) there are, at least, 

two different elements G 1 and G 2  and denote: 

n
'

1 = Card Θ
'

1 , Θ
'

1 = Ф (G, Θ 1 ); 

n
'

2 = Card Θ '

2 , Θ '

2  = Ф (G, Θ 2 ). 

Then, takes place 

Theorem1 [5] 

The probability of event  h
12G ( x ) = y is greater or 

equal than 1 -
11

'

2

n

n
 

P (h
12G ( x ) = y )   1 -

11

'

2

n

n
. 

We’ll say that a degenerate selfguessing fuzzy 

classifier G 2 is simpler than degenerate selfguessing 

fuzzy classifier G 1  (while moving from learning set Θ 1  

to learning set Θ 2 ) and put down this fact as G 2   G 1  

iff  the following relationship is obeyed: 

n '

2 < n '

1                                   (3) 

Takes place 

Theorem2 (The quality criterion for degenerate 

selfguessing fuzzy classifiers based on invariant 

simplicity measure) 

G 2   G 1   G 2   G 1 . 

Proof is directly follows from definitions (2), (3) and 

Theorem 1. 

4. IMPROVEMENT OF THE CONSISTENTLY AND 

DEGENERATE SELFGUESSING FUZZY 

CLASSIFIERS 

For an arbitrary learning set and fixed X and Y let’s 

denote by  )(XYG  a set of all possible fuzzy classifiers, 

operating with Θ (We’ll omit lower indexes and write 

down {G(Θ)} in the situations when it’s obvious what  X 

and Y we speak about). 

Takes place 

Theorem3 

DSg(Θ)  Con(Θ)  {G(Θ)}.                 (4) 

Proof is directly follows from corresponding definitions. 

Let’s denote by F   an arbitrary mapping of {G (Θ)} 

into itself (F  :{G(Θ)} →{G(Θ)}) and by {L(G(Θ))} – a 

collection of all possible mappings F  . 

Let also K = { } corresponds to a fixed collection of 

learning sets from 2 YX and  Θ 1 , Θ 2  = Θ 1   {( x , y )} – 

to the arbitrary elements from K. 

Let’s denote by means of G 1 and G 2  the fixed 

element from {G( 1 )}. We’ll say that G 2 improves 

G 1 on the element x   X, and put down this fact as 

G 2  = F
1
( G 1 ) iff 

P (h
12G ( x ) = f( x )) > P(h

11G ( x ) = f( x )). 

Under fixed Θ and G let’s denote by means of 

{H(G(Θ))} a set of all possible mappings F . 

Let G be a fixed fuzzy classifier and Θ 1 , Θ 2  = Θ 1  

 {( x , y )} such learning sets that 

GDSg(Θ 1 )DSg(Θ 2 ).Then, takes place 

Theorem4 

For an arbitrary fuzzy classifier G 1 Con(Θ 1 )\ 

DSg(Θ 2 ) exist F
1
{H(G 1  (Θ 1 ))}  such that G = 

F
1
( G 1 ). 

5. CONCLUSION 

It was previously established [4-5] that in solving 

many practical and model machine learning, data mining 

and pattern recognition problems the efficiency of the 

degenerate selfguessing fuzzy classifiers is much higher 

than the efficiency of fuzzy classifiers which don’t belong 
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to DSg(Θ). 

However, due to the famous induction paradoxes [6], 

such behavior of the degenerate selfguessing fuzzy 

classifiers can’t be universal. 

That is why it is important to elucidate conditions 

under which the joint use of degenerate selfguessing and 

improvement principles will bring us to guaranteed 

results. 

One of such conditions is given Theorem 4 revealing 

restrictions under which a degenerate fuzzy classifier 

could be an improvement of a consistently fuzzy 

classifiers. 

Theorem 3 shows that pay for the mentioned 

improvements may be high since the move from the right 

to the left in inclusion (4) cannot be performed 

automatically. 

Fuzzy classifiers are heuristic algorithms that 

transform information. The heuristic nature of these 

algorithms is determined by the principle boundedness of 

the power of learning set Θ. 

The models of reasoning, embedded in each heuristic, 

specify a confidence level of the corresponding fuzzy 

classifier, this level may be deviated far from 100%. In 

such a situation one possible way for increasing the 

efficiency of fuzzy classifiers is connected with the 

postulation of an informal principal for selection the 

“best” fuzzy classifier among the set of alternative, 

roughly equivalent ones. 

One of the principles is the Occam’s Razor principle 

that acquired a good reputation itself in the physical 

science. According to this principle when other conditions 

being equal we must chose the simplest model among two 

different ones. 

Unfortunately, when employing this principle in data 

mining practice the identification problem of the model’s 

simplicity (complexity) arises. The data mining (or 

machine learning or pattern recognition) model that is 

simple in one linguistic structure may be a complicated 

one in another such structure. 

The first effort to investigate the possibility of an 

operational interpretation of the Occam’s Razor principle 

in terms of data mining (machine learning) models based 

on fuzzy classifiers seems to be undertaken in the paper. 

It is shown that at least for one family of such 

classifiers this principle may be formulated by a 

rigorously unambiguous way irrespective of the used 

simplicity measure and linguistic structure. 

Theorem 2 gives the quality criterion for degenerate 

selfguessing fuzzy classifiers based on invariant 

simplicity measure. 
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