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Abstract: A new special case of high-order Markov 

chains with a small number of parameters – Markov 

chain of conditional order – is considered. Statistical 

estimators for parameters of the model by observed time 

series are constructed; their asymptotic properties are 

analyzed. Results of computer experiments are presented. 
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1. INTRODUCTION 

Discrete time series are widely used for modeling 

processes in applications. One usually needs to take into 

consideration dependence on the previous states of the 

process. Markov chain of the order s, s ≥ 1, [1] is a well-

known mathematical model adequate for these purposes. 

Markov chains are used in signal processing [2], 

genetics [3], economics [4], information security [5] and 

many other areas. However, it becomes difficult to use 

this model when the order s is large as the number of 

parameters increases exponentially as s grows. Therefore 

one needs to have the data set of huge size for fitting the 

model. Thus the problem of development and analysis of 

special kind of high-order Markov chains with a small 

number of parameters is rather important. Give some 

well-known examples of such models. For Markov chain 

of the order s with r partial connections [6] and for the 

variable length Markov chain [7] the transition probability 

depends on some selected states (and its number is quite 

small), but not on all s states. For Raftery model [8] one 

needs only one additional parameter for each order. 

Another mathematical model with a small numbers of 

parameters – Markov chain of conditional order [9] – is 

under consideration in this paper. The paper is devoted to 

identification of this model by observed data. 

2. MATHEMATICAL MODEL 

Introduce the notation: N is the set of natural numbers, 

2 N   ; {0,1, , 1}A N   is the finite state space 

with N elements; 1( , , )n n m

m m nJ j j A    , n ≥ m, is the 

multiindex; { : }tx A t N   is a finite homogeneous 

Markov chain of the order s (2 ≤ s < ∞) defined at some 

probability space ( , , P)F ; 1
1

( )sJ
P p   is the (s+1)-

dimensional one-step transition probability matrix, 

1
1

1 1 1P{ | , , },s t s s t s s tJ
p x j x j x j t        N ; 

{1, 2, , 1}L s  , K=N
L
 –1 are natural numbers; 

(1) ( ), , MQ Q  are M (1 ≤ M ≤ K+1) different square 

stochastic matrices of the order N: 
( ) ( )

,( )m m

i jQ q , 

( ) ( )

, ,0 1, 1, , , 1m m

i j i j

j A

q q i j A m M


      ; 

1 1{0,1, , 1}
m

m k m n

n k

k n

J N j N  



    , 1 n m s   , 

is the numeric representation of the multiindex 
m

nJ ;  

I{C} is the indicator of the event C. 

Define the Markov chain { : }tx A t N  of 

conditional order if its one-step transition probabilities 

have the following form:  

1
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{ } k
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b jk s

K
ms

s L jJ
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p I J k q


 



   , (1) 

where 1 km M  , 1 kb s L   , 0 k K  , 

0
min 1k

k K
b

 
 ; and all elements of the set {1, 2,…, M} 

occur in the sequence m0, …, mK. The sequence of 

elements 1

s

s LJ   , that determines the condition in the 

formula (1), is called the base memory fragment (BMF) 

of the random sequence. According to the definition (1) 

the state of the model xt at time t doesn’t depend on all 

previous states, but depends only on L+1 states 

1( , )
k

s

b s Lj J   ; the value of BMF 1

s

s LJ    determines not 

only the state 
kbj , but it also determines the transition 

matrix. 

Thus the Markov chain of conditional order is 

determined by the following parameters: unconditional 

order s of the Markov chain; the length of BMF (L); K+1 

parameters {bk} determining conditional orders of the 

Markov chain 1 { 1, 2, , }k ks s b L L s      ; K+1 

parameters {mk} determining transition matrix; M 

stochastic matrices of the order N, which are described by 

MN(N–1) independent parameters. Hence the transition 

matrix 1
1

( )sJ
P p   of the Markov chain of conditional 

order is defined by 2( 1) ( 1)LD N MN N     

independent parameters. 

Note that if 01, 1KL s b b     , we have fully 

connected Markov chain of the order s; similarly if 

0 Kb b s L    , we have fully connected Markov 

chain of the order L+1. If M = K+1, then all the 

parameters {mk} are different and each value k of BMF 

has its own transition matrix Q
(k)

. 

3. STATISTICAL ESTIMATION OF PARAMETERS 

At first, let us give ergodicity conditions for the 

Markov chain of conditional order. 

Theorem 1. Markov chain of conditional order is 

ergodic if and only if there exists a natural number 

, msm N,  such that the following inequality 

holds: 

1
1 1

1

( )1

,
,

0 1

min { } 0k

s s m s b i i sk
m m sm
s

mK
mi s

i s L j j
J J A

k iJ A

I J k q
   




 

 


 

    .(2) 

In the sequel, we will consider ergodic Markov chains. 

Denote the probability distribution of the 0

lJ  by π(r, 0

lJ ) 
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= P{xt = j0, 1

t r l

t rX  

   = 
1

lJ }, 0

lJ A
l+1

, l = 0, 1,…, π(0, 0

lJ ) 

= π( 0

lJ ). 

Construct now estimators of parameters of the model. 

At first, let us obtain the maximum likelihood estimators 

(MLE) of the matrices )()1( ,, MQQ   using an observed 

realization nX1  of length n. All other parameters are 

assumed to be known. We need the following notation:  
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 ss JI
pP

11 ,
 is the one-step transition probability 

matrix for the s-dimensional Markov chain of the first 

order   N  txxxX sttt

t ,,,, 11

)(  , with extended state 

space, sss AJI 11 , , 
s

sssss jIJIJI
pp

,,, 1
1

1211
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. sN
E  is the 

identity matrix of the order sN ; 
n

n
PP


 lim*

 is the limit 

matrix; )()(
11 ,

1*
sss JIN

zPPEZ   , sss AJI 11 , , 

1
1 2 1

1 1
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    (we denote 

0 01

0 1( , )
l l l l

jA A j J
 

  for shot). 

Theorem 2. If true values L, }{ kb  and }{ kmk   are 

known, then the MLE for the one-step transition 

probabilities 
)(

v,
km

uq , ,v, Au   are 

*
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where k kl s b L   . 

Remark. If some parameters Kkmk ,,1,0},{  , 

are equal, i.e. one transition matrix corresponds to 

different base memory fragments, then the MLE have the 

following form: 
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where },:{ * imAwM w

B

i    ,,,1 Mi   *

1

B
M

i

i AM


 . 

Construct now estimators for the parameters bk, which 

determine conditional order of the chain sk, k = 0 ,…, K. 

Theorem 3. If the true values L, }{ km  are known, 

then the MLE of }{ kb  are  

1 ,

ˆ ˆargmax ( ) ln( ), 0, ,kms b L

k i,wj i, j
b s L i j A

b n q k K  

   

  . (5) 

Finally, estimate the length of BMF L and the order of 

the chain s. These estimators are constructed using 

Bayesian Informational Criterion [10]: 

2 ,1

ˆˆ( , ) argmin ( , )
s S L L

s L BIC s L
    

 ,  (6) 

ˆ( ) ( )

, , ,

, , 0

ˆ( , ) ( δ ν ( ) ln ) 2 log ,k

L

K
s b L k L

w k u wv u v

u v A k

w A

BIC s L n q N n
 

 

 



     

where 2S  , 1 1L S     are maximal admissible 

values of the parameters s  and L respectively; estimators 

,,,1,ˆ )( MiQ i   and Kkbk ,,0,ˆ  , can be found using 

(3) and (5) respectively. 

3. ASYMPTOTIC PROPERTIES OF THE 

ESTIMATORS (3), (5) 

We’ll use the notation: 

1
0 10

( )

1 ,

0

{ }L
L

K
L k

j jJ
k

q I J k q




    , 1 1 1
0 0 0

ˆ( )L L LJ J J
q n q q  

  ; 

0 1

1
1 0

0

, 0

( , )
( ) ( , )ln ,

( , )
L

L
L b

k b L
j j A b

r J
l b r J

r J












   

where k is a integer number, such that <
1

LJ > = k, rb = s –

 b – L, b = 1, …, s-L; 1 1( ) ( , , )L

k k LI b I b j J   

0 1

1
1 0

0

, 0 1

( , )
( , ) ln

( , ) ( )
L

L
L b

b L
j j A b L

r J
r J

r J j




 





 

   is the 

Shannon information [5] on the symbol jL+1 contained in 

the sequence 0

lJ  under fixed BMF 
1

LJ . The position of 

the symbol j0 is determined by b; similarly 

1 1 1( , )s L L

k k LI I j H J
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ˆ ( )kl b =

0 1
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0 1
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1 0
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L b
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  are 

statistical estimators of the parameters ( )kl b  and ( )kI b  

respectively;  ˆ( ) ( ) ( )H H Hr n I r I r   . 

Theorem 4. If the Markov chain of conditional 

order (1) is stationary, then (2) gives consistent estimators 

at n : 

Mmqq m

u

m

u  1,ˆ )(

v,

P)(

v, .  (7) 

Theorem 5. Under the conditions of Theorem 4 at 

n  the random variables  1
0

1 2

0{ : }L

L L

J
q J A

   are 

jointly asymptotically normal with zero means and 

covariance matrix 
1 1

0 0( , )L L

q q J I    : 

0 1

1
0

1 11 1

0 0 0 0

0

{ }
( , ) { }

( )

L
L

L

L L J iL L L L

q LJ

I j i q
J I I J I q

J





  
 

   . (8) 

Prove now the consistency property for the 



159 

estimators (5). 

Lemma 1. Under the conditions of Theorem 4, if 
1

LJ , 

<
1

LJ > = k, is fixed BMF, then 

arg
1
max
b s L  

 lk(b) = arg
1
max
b s L  

 Ik(b). 

Lemma 2. Under the conditions of Lemma 1 

Ik(b) = Ik. 

Theorem 6. Under the conditions of Lemma 1at n→∞ 

the statistic ˆ
kb  is a consistent estimator: 

Pˆ
k kb b . 

Theorem 7. Under the conditions of Theorem 4 at 

n  the random variables {ψ ( ) }H r  are jointly 

asymptotically normal with zero means and covariance 

matrix ψ ψ ( , )r k   , 0 ≤ r,k ≤ s-L-1,  

0 1 0 1

ψ 1 2 3 4 5

, ,

( , )

L Lf f g g

r k t t t t t

 

     

0 1 1 1 1
1

10 1 1

( , ) ( )
ln

( )( , ) ( )

L L

L L

L

LL

r f H f H f
t

fr f H f

 

 

 



  , 

0 1 1 1 1
2

10 1 1

( , ) ( )
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( )( , ) ( )

L L

L L

L
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k g H g H g
t

gk g H g
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1 1
1

1
1 0 1 1 0 1

3 1

0 1 0 1

( , ) ( , )
( ) ,

( , ) ( , )s s

L L
s L

L L

E A

r f H f k g H
t E

r f H k g H

 


  


 



  

4 0 1 1 0 1 0 1 1 0 1( , ) ( , ),L L L L

L Lt h f H f g H h g H g f H  

5 0 1 1 0 1 13 ( , ) ( , ).L L

L Lt r f H f k g H g    

4. NUMERICAL EXPERIMENTS  

Experiment 1. Illustrate consistency of the estimators 

0
ˆ ˆˆ ( , , )Kb bb , calculated according to (5). 

Numerical experiment was conducted as follows:  

U = 100 independent realizations of the Markov chain of 

conditional order of fixed length n was simulated for the 

parameters: N=2, A={0, 1}, s=2, L=4, M=K+1=16, b = (4, 

10, 19, 18, 17, 1, 1, 1, 3, 25, 28, 13, 7, 23, 2, 1), 

1 ≤ bi ≤ 28, 0 ≤ i ≤ K=15. The length realization n varied 

from 10
3
 to 10

7
. Parameter b and matrices (1) ( ), , MQ Q  

are unknown. 

Estimators b̂  were calculated for each u-th realization 

u = 1, …, U, and corresponding matrices 
( ) ( )ˆ ˆ ˆ( ), 1, ,i iQ Q i M b  were obtained. We used 

estimate of the variance 
( ) ( ) 2

0 , 0

ˆ ˆv ( )
K N

u k k

n ij ij

k i j

q q
 

   as a 

measure of accuracy of the estimators for u-th realization 

of the length n. For each value of n estimators ˆ{v }u

n  were 

computed; then the total mean square error for the 

estimators 
1

1
ˆ ˆv v

U
u

n n

uU 

   was evaluated. The results are 

plotted on Figure 1 as little circles; large circles 

correspond to similar errors obtained using the correct 

values of b. 

 

Fig.1 – Dependence v = v(n) 

Experiment 2. Estimate BMF length L and the order 

of the Markov chain s using the Bayesian Information 

Criterion (BIC). Also we compare BIC with another well-

known criterion – Akaike Information Criterion 

(AIC) [11]: 

1( , ) ( , , ) ln( )
2

n

n

D
BIC s L l X L s n   , 

1( , ) ( , , )n

nAIC s L l X L s D   , 

where 2( 1) ( 1)LD N MN N     is the number of 

independent parameters of the model, 

( )

1 ,

, , 0

( , , ) ( ) ( ) lnk k

L

K
l mn

n u v

u v A k

w A

l X L s I w k uwv q
 



     

is a log-likelihood function 
2 ,1

ˆˆ( , ) argmin ( , )
s S L L

s L BIC s L
   

  

or 
2 ,1

ˆˆ( , ) argmin ( , )
s S L L

s L AIC s L
   

 . 

The Markov chain of conditional order is simulated 

with the following parameters: A = {0, 1}, N = 2, s = 4,  

M = 2, L = 2, b0 = 2, b1 = 2, b2 = 1, b3 = 1, m0  = 1, m1 = 2, 

m2 = 1, m3 = 2. The length of the chain n = 20000. 

Matrices Q
(1)

 and Q
(2)

 are: 

(1)
0.18 0.82

0.41 0.59
Q

 
  
 

, 
(2)

0.77 0.23

0.09 0.91
Q

 
  
 

. 

Maximal admissible values of the order and the BMF 

are S+ = 8, L+ = 4. If M is unknown, let us assume its 

maximal admissible value M = N
L
, D = N

L
(2+N(N-1)) 

(each value of BMF has its own transition matrix). The 

values of s, B and the corresponding values of BIC and 

AIC are given in Table 1. 

Table 1. Estimates of s, L 

(s,L) BIC AIC (s,L) BIC AIC 

(2,1) 13477 13445 (6,2) 9997 9934 

(3,1) 12359 12327 (6,3) 10072 9946 

(3,2) 11964 11901 (6,4) 10217 9964 

(4,1) 10701 10670 (7,1) 10701 10670 

(4,2) 9997 9934 (7,2) 9997 9934 
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(4,2) 10073 9946 (7,4) 10071 9944 

(5,1) 10701 10670 (7,3) 10211 9958 

(5,2) 9997 9934 (8,1) 10701 10670 

(5,3) 10072 9946 (8,2) 9997 9934 

(5,4) 10221 9968 (8,3) 10069 9942 

(6,1) 10701 10670 (8,4) 10207 9954 

We can see from Table 1 that BIC(s, L) attains the 

minimum if L = 2 and s = 4, 5,…, 8. The true order of the 

chain is equal to s = 4; the following pairs (s, L): (4, 2), 

(5, 2), (6, 2), (7, 2), (8, 2) are equivalent because we have 

the same values of conditional orders sk  for all ones. 

AIC(s, L) reaches the minimum on equivalent pairs (4, 2) 

and (5, 2). So both BIC and AIC attains the minimum on 

true values of s and L. 

6. CONCLUSION 

In this paper we consider the Markov chain of 

conditional order which is a new model of the high-order 

Markov chain with a small number of parameters. 

Statistical estimators for parameters of the model are 

constructed. Asymptotic properties of transition 

probabilities and conditional orders are analyzed. 

Numerical experiments illustrate the theoretical results. 
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