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SOLUTION OF MIXED CONTACT PROBLEMS
IN THE THEORY OF NONSTATIONARY HEAT
CONDUCTION BY THE METHOD OF
SUMMATION-INTEGRAL EQUATIONS

V. P. Kozlov and P. A. Mandrik UDC 517.968, 536.24

The laws governing the development of spatial honstationary temperature fields in a bounded cylinder
and a half-space where one of the end surfaces of the cylinder touches the surface of the half-space
in a circular region are determined. A solution of a mixed axisymmetric nonstationary problem of
heat conduction is obtained in the region of Laplace transforms. In solution of this problem, there
appear summation-integral equations with the parameter of the integral Laplace transform (L-pa-
rameter) and the parameter of the finite integral Hankel transform (H-parameter).

The formulation of the problem is in the determination of the laws governing the development of
spatial nonstationary temperature fields in a half-space and a bounded cylinder of radius R and height h
where one of the end surfaces of the bounded cylinder touches the surface of the half-space. In this case, the
thermophysical characteristics of the considered bodies and their initial temperatures are different and the side
and nontouching end surfaces of the cylinder are maintained at a constant initial temperature. Ideal heat insu-
lation exists on the half-space surface beyond the circular region of contact.

We introduce the following notation: r and z are the cylindrical coordinates, T is the time; Ty(r, z 1)
is the temperature of the semibounded body (r >0, z>0, 1> 0); T,(r, z T) is the temperature of the cylinder
(O<r<R, -h<z<0, 1>0); A;>0 and a, >0 are the coefficients of thermal conductivity and thermal dif-
fusivity of the semibounded body and the cylinder, respectively.

We consider the system of two heat-conduction equations
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with the initial conditions
T,(r,z0 =Ty, r>0, z>0; T,(r,z0 =Ty, 0<r<R, -h<z<0, Ty #Ty,, (3)

and the boundary conditions (within the corresponding ranges of change of the coordinates)
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where Ky = )\1/)\2.

We note that, according to [1], conditions (6) and (7) determine the boundary condition of the fourth
kind in the region z =0, 0<r <R, and the set of conditions (6)-(8) determines mixed boundary conditions
on the surface z = 0 in the corresponding regions of change of the variable r. _

The solution of Eqg. (1) with conditions (3)-(5) in the region of the Laplace transform Ty(r, z, s) =
I Tq(r, z 1) exp (-st)dt, Re s>0, can be written in the form [2]
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where Jo(pr) is the Bessel function of the first kind and zero order, C(p, s) is the unknown analytical func-
tion, and the restriction Re s> 0 on the parameter of the Laplace transform here and below is omitted in our
notation for brevity.
The solution of Eq. (2) with conditions (3)-(5) in the region of L-transforms using the finite Hankel
R

transform TZH(p, Z 9 = ITz(r, z, S)Jo(pr)rdr can be found in the form [2]
0
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where Ji(Um is the Bessel function of the first kind and first order, E(pm/ R, ) is an unknown analytica
function, and p,, are the roots of the equation
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Taking into account the mixed boundary conditions (6)-(8) on the surface z = 0, we can explicitly

obtain the following system of summation-integral equations with the L-parameter:
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whence the unknown functions E(um/ R, s) and E(p, S) must be determined.
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We find the value of the function B(u,/R, s) from Eq. (13), expanding the functions within the range

(0, R) into the Fourier-Bessel series in positive roots of Eq. (11) of the form [3]
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As a result, we have
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Substituting (15) into Eq. (12), we come to the paired integral equations with the L-parameter

C a, U V— s T, T,
J-C(p,s)%*‘K)\ 3—2 SlDtanh% p2+a—2 %Jo(pr)pdp:%—%, 0<r<R; (16)
0 p”+—0
H O & H
Cp.s ?+= 3, (pr)pdp=0, R<r<o. (17)
{ (0. 9/p a, S0 (Pr) pop

__ To solve the paired integral equations (16) and (17), i.e., to determine the unknown analytical func-
tion C(p, s), we use the substitution
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which provides the fulfillment of Eqg. (17) automatically due to the corresponding discontinuous integral
within the range R<r < [4].

Substitution of (18) into (16) leads to the integral equation with the L-parameter for determination of
the unknown analytical function ¢(t, s):
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We note that the inverse Laplace transform exists for the left-hand side of Eq. (19), since this is true
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for the right-hand side, viz.: L 1§§—ﬂ§ Top = Toy 2 0.

Determination of ¢(t, s) directly from Eq. (19) is a rather labor-consuming problem. Here we suggest
a method of determination of §(t, s) by reducing Eq. (19) to a simpler form. For this purpose, having re-
placed r by p in advance, we multiply the left- and right-hand sides of Eq. (19) by the integrating factor

— O

S 230
COSD al(r M)D . . _ . .
2u 2 2)3/2 and integrate with respect to p within the limits from zero to r. Then Eqg. (19) is

r-—u
reduced to the form
0 0
-To) s

_ - — 02 o) >0 < 20
¢ (r,9 J’q)(ts)K(rts)dt - cosg-\/a1 o 0<r<Rr, (20)

635



where
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We note that in derivation of (20) the following values of the integrals were taken into account:
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where Si(2) = smt dt is the sine integral function (integral sine).
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The method for determining ¢(r, s) from an equation of the type (20) is suggested, for example, in
[5].

We note that if R - « and h - o, then we have a one-dimensional nonstationary case of thermal
contact of two semibounded bodies with different initial temperatures and different thermophysica properties
[1]. In this case, the paired equations (16) and (17) do not appear.

Thus, having determined the value of the function ¢(t, s) from Egs. (19) or (20), we find the value
of the function C(p, s) by formula (18) and then the value of the function B(u/R, s) by formula (15). Fi-
nally, using formulas (9) and (10), we find the temperature fields Ty(r, z, s) and Ty(r, z ) in the region of
L-transforms, and, having applied the inverse Laplace transformation, we determine the corresponding values
of the inverse transforms T4(r, z T) and To(r, z T).

In conclusion, we note that the existence of the continuoudly differentiable solution of the integral
equation with the L-parameter (20) can be proved by writing it in the form
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[6] the convergence of the integral
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are the sufficient conditions for the existence of its solution.
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