
SOLUTION OF NONLINEAR TWO-DIMENSIONAL
DIFFERENTIAL EQUATIONS OF TRANSFER
WITH DISCONTINUITY BOUNDARY CONDITIONS
ON THE SURFACE OF AN ISOTROPIC SEMIINFINITE
BODY IN ITS HEATING THROUGH A CIRCLE
OF KNOWN RADIUS
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An analytical solution of the heat-conduction problem is obtained by the method of linearization of a
nonlinear equation of transfer and combined application of integral transforms to the linearized prob-
lem for an isotropic half-space heated through a circular region 0 < r < R on its surface z = 0.

As is known, in high-intensity heat-transfer processes, e.g., in thermal explosion ("shock"), chemical
reactions, etc., temperature undergoes substantial changes in small time intervals. In describing transport phe-
nomena occurring within a wide range of temperature variation, one must take into account the dependence
of the coefficients of transfer on temperature. Under these conditions, the flow of thermal energy becomes
nonlinear and to determine the temperature field, one must solve the nonlinear differential equation of transfer

c (T) γ (T) 
∂T

∂τ
 = div (λ (T) grad (T)) ,

(1)

where λ(T), c(T), and γ(T) are, respectively, the coefficients of thermal conductivity, specific heat, and den-
sity of the considered isotropic body that depend only on the temperature T = T(r, z, τ) and do not depend
on the coordinates (r, z are the cylindrical coordinates; τ is the time).

We have a semiinfinite isotropic body whose initial temperature is T(r, z, 0) = T0 = const. At the
initial instant of time, a part of the surface z = 0 is heated by a variable heat flux q(r, z) through a circle of
known radius 0 < r < R. The remaining part of the surface (z = 0, R < r < ∞) is heat-insulated, i.e., the equal-
ity Tz(r, 0, τ) = 0 (R < r < ∞, z = 0, τ > 0) holds. It is necessary to find the temperature field T(r, z, τ) for
z > 0, r ≥ 0, and  τ > 0.

Thus, using the function of excess temperature θ = θ(r, z, τ) = T(r, z, τ) − T0 = T − T0, we reduce the
problem posed to the necessity of solving the nonlinear equation (1), which in the cylindrical coordinates r,
z has the form

c (θ + T0) γ (θ + T0) 
∂θ
∂τ

 = 
∂
∂r

 



λ (θ + T0) 

∂θ
∂r




 + 

1
r

 λ (θ + T0) 
∂θ
∂r

 + 
∂
∂z

 



λ (θ + T0) 

∂θ
∂z




 ,   r, z, τ > 0 , (2)

with the homogeneous initial condition

θ (r, z, 0) = 0 , (3)
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the unmixed discontinuity boundary condition for z = 0

− 
∂θ (r, 0, τ)

∂z
 = 











q (r, τ)
λ (θ + T0)

 ,

0 ,
     

0 < r < R ,

R < r < ∞ ,
     

τ > 0 ,   λ (θ + T0) > 0 ,

τ > 0 ,

(4)

and the boundary conditions for z = ∞, r = ∞, and r = 0

∂θ (r, ∞, τ)
∂z

 = 
∂θ (∞, z, τ)

∂r
 = 

∂θ (0, z, τ)
∂r

 = 0 .
(5)

We linearize Eq. (2) by introducing a new integral function [1, 2]

U = U (T) = U (θ) = 
1
λ0

   ∫ 
T0

θ+T0

  λ (T′) dT′ = 
1
λ0

 ∫ 
0

θ

λ (θ′ + T0) dθ
′ , (6)

where λ0 is the coefficient of thermal conductivity at T = T0 (θ = 0).
The introduced function U(θ) is conceptually a potential whose gradient is proportional to the heat

flux [2].
From relation (6) it follows that

∂U

∂τ
 = 

λ (θ + T0)
λ0

 
∂θ
∂τ

 ;   
∂U

∂r
 = 

λ (θ + T0)
λ0

 
∂θ
∂r

 ;   
∂U

∂z
 = 

λ (θ + T0)
λ0

 
∂θ
∂z

 , (7)

and Eq. (2) takes the form

1

a (T)
 
∂U

∂τ
 = 

∂2U

∂r2  + 
1

r
 
∂U

∂r
 + 

∂2U

∂z2  ,
(8)

where

a (T) = 
λ (T)

c (T) γ (T)
 ;   c (T) γ (T) ≠ 0 .

(9)

Thus, when the new variable U (relation (6)) is used the form of the heat-conduction equation is
retained for the linear case, but the coefficient of thermal diffusivity a depends on temperature. Here, in most
cases, the variation in the coefficient of thermal diffusivity a as a function of the temperature variation is less
important than the similar variation in λ(T). Consequently, it may approximately be assumed that a(T) = a0

= const (a0 > 0 is the thermal diffusivity at T = T0), since, for example, for metals at temperatures close to
absolute zero λ(T) and c(T) are proportional to an absolute temperature [2].

After linearization of the nonlinear equation (2) in the particular case a(T) = a0 the mathematical
formulation of the problem is written as

1

a0

 
∂U

∂τ
 = 

∂2U

∂r2  + 
1

r
 
∂U

∂r
 + 

∂2U

∂z2  ,   r, z, τ > 0 , (10)
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with the initial condition (τ = 0)

U = 0 (11)

and the boundary conditions

− 
∂U

∂z
 = 











q (r, τ)
λ0

 ,

0 ,
     

0 < r < R ,

R < r < ∞ ,
     for   z = 0 ; (12)

∂U
∂z

 = 0   for   z = ∞ ;   
∂U

∂r
 = 0   for   r = ∞ ;   

∂U

∂r
 = 0   for   r = 0 . (13)

We use the Laplace transform

U
__

 = L [U] = ∫ 
0

∞

exp (− sτ) U dτ = ∫ 
0

∞

exp (− sτ) dτ   ∫ 
T0

T(r,z,τ)

   
λ (T′)
λ0

 dT′ ,   Re s > 0 , (14)

with account for which Eq. (10) takes the form

∂2U
__

∂r2  + 
1

r
 
∂U
__

∂r
 + 

∂2U
__

∂z2  − 
s

a0

 U
__

 = 0 , (15)

and the boundary conditions are

− 
∂U
__

∂z
 = 











q
_

 (r, s)
λ0

 ,

0 ,
     

0 < r < R ,   Re s > 0 ,

R < r < ∞ ,
     for   z = 0 ; (16)

∂U
__

∂z
 = 0   for   z = ∞ ;   

∂U
__

∂r
 = 0   for   r = ∞ ;   

∂U
__

∂r
 = 0   for   r = 0 , (17)

where

q
_

 (r, s) = L [q (r, τ)] = ∫ 
0

∞

exp (− sτ) q (r, τ) dτ ,   Re s > 0 . (18)

We note that the conditions of the existence of integral (18) can be found in [1] and we then assume
that these conditions are satisfied.

Next, applying the integral Hankel transform to (15) [1]

U
__

H = ∫ 
0

∞

U
__

 J0 (pr) rdr , (19)
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where J0(pr) is the first-kind Bessel function of zero order, and allowing for the boundary conditions (17), we
obtain the equation

d2U
__

H

dz2  − 



p2 + 

s

a0




 U
__

H = 0 ,   Re s > 0 . (20)

In the case ∂U
__

H
 ⁄ ∂z = 0 for z = ∞ the solution of Eq. (20) has the form

U
__

H = A
__

l (p, s) exp 



− z √p2

 + 
s
a0




 ,   Re s > 0 .

(21)

Applying the inversion formula to the Hankel transform, we obtain the solution for the function U
__

 =
L[U]:

U
__

 = ∫ 
0

∞

A
__

l (p, s) exp 



− z √p2

 + 
s
a0




 J0 (pr) pdp ,   Re s > 0 . (22)

We find the value of A
__

1(p, s) from condition (16) for z = 0:

A
__

l (p, s) = 
1

λ0 √p2
 + 

s
a0

  ∫ 
0

R

J0 (px)  q
_
 (x, s) xdx ,  Re s > 0 , (23)

i.e., the solution has the form

U
__

 = ∫ 
0

∞

exp 



− z √p2

 + 
s

a0




 
J0 (pr) pdp

√p2
 + 

s
a0

  ∫ 
0

R

q
_
 (x, s) J0 (px) xdx ,   Re s > 0 . (24)

Using the inversion formula of the Laplace integral [1], we represent the inverse transform U =
U(T(r, z, τ)) as

U = 
√ a0

λ0√π
 ∫ 
0

∞

J0 (pr) pdp ∫ 
0

R

J0 (px) xdx ∫ 
0

τ
q (x, τ − ξ)

√ ξ
 exp 




− a0p2ξ − 

z2

4a0ξ




 dξ . (25)

Allowing for relation (6), we obtain the integral equation for determining λ(T) within the temperature
range (T0, T) for the known values of U(T(r, z, τ)) or the equation for determining the temperature field T(r,
z, τ) − T0 = θ(r, z, τ) for the known dependence λ(T) within the same temperature range (T0, T):

    ∫ 
T0

T(r,z,τ)

   
λ (T′)

λ0

 dT′ = 
√ a0

λ0√π
 ∫ 
0

∞

J0 (pr) pdp ∫ 
0

R

J0 (px) xdx ∫ 
0

τ
q (x, τ − ξ)

√ ξ
 exp 




− a0p2ξ − 

z2

4a0ξ




 dξ . (26)

Relying on formula (26), we consider, for example, the primal problem of determination of the tem-
perature field θ(r, z, τ) = T(r, z, τ) − T0 in the particular case of variation in λ(T) according to the law
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λ (T)
λ0

 = 1 + βT ,
(27)

where βλ0 = tan ϕ is the angular coefficient of the straight line λ(T) = λ0 + βλ0T, 0 < ϕ < 2π.
Substituting (27) into the left-hand side of Eq. (26), we obtain the quadratic equation

β
2

 T2 + T − 



T0 + 

β
2

 T0
2 + U




 = 0 ,   β ≠ 0 , (28)

where U is determined by formula (25).
Solution of Eq. (28) is trivial and has the form

T1,2 (r, z, τ) = 
1
β

 






 − 1 ± √1 + 2β 




T0 + 

β
2

 T0
2
 + U










  . (29)

The value of the roots of T1,2(r, z, τ) is selected from physical considerations and depends on the
initial temperature T0 > 0 or T0 < 0 and also on positive or negative values of β. In the case β = 0, λ(T′)  =
λ0 holds and the solution for U = θ(r, z, τ) = T(r, z, τ) − T0 is determined by formula (25).

We now consider the case of assigning mixed boundary conditions of the form

− 
∂θ (r, 0, τ)

∂z
 = 

q (r, τ)
λ (θ + T0)

 ,   0 < r < R ,   λ (θ + T0) > 0 ,

θ (r, 0, τ) = 0 ,   R < r < ∞ .
(30)

In this case, solution of the nonlinear equation (2) is also connected with its initial linearization using relation
(6); however, determination of the function U from Eq. (10) necessitates solution of the so-called paired in-
tegral equations with the L-parameter of the form (see, e.g., [3–6]):

 ∫ 
0

∞

C
__

 ∗  (p, s) √p2
 + 

s
a0

 J0 (pr) dp = 
q
_
 (r, s)
λ0

 ,   0 < r < R ,   Re s > 0 ,

 ∫ 
0

∞

C
__

 ∗  (p, s) J0 (pr) dp = 0 ,   R < r < ∞ ,   Re s > 0 .

(31)

The method of solution of the paired equations (31), i.e., the method of determination of the function
C
__

∗ (p, s) is considered in [3−6] in sufficient detail. At the same time, the solution of Eq. (15) for the function
U
__

 is determined by a formula similar to (22):

U
__

 = ∫ 
0

∞

C
__

 ∗  (p, s) exp 






− z √p2

 + 
s
a0

 






  J0 (pr) dp ,   Re s > 0 , (32)

with the value of C
__

∗ (p, s) being specified by the relation
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C
__

 ∗  (p, s) = 
p

√p2
 + 

s
a0

  ∫ 
0

R

ϕ
__

 ∗  (t, s) sin 



t √p2

 + 
s
a0

 



 dt ,   Re s > 0 , (33)

where the analytical function ϕ
__

∗ (t, s) satisfies the equation

 ∫ 
0

r
tϕ
__

 ∗  (t, s)
√ r2 − t2

 exp 



− √s

a0

 (r2
 − t

2)  



 dt + ∫ 

0

R

ϕ
__

 ∗  (t, s) sin 



t √ s

a0

 



 dt −

− ∫ 
r

R
tϕ
__

 ∗  (t, s)
√ t2 − r2

 sin 


√s

a0

 (t2 − r
2)  




 dt = 

1

λ0

 ∫ 
0

r

q
_
 (ρ, s) ρdρ ,   0 < r < R ,   Re s > 0 . (34)

We note that the methods of determination of the function ϕ
__

∗ (t, s) are described in [5].
Hereafter the determination of the temperature field T(r, z, τ) for this problem with mixed boundary

conditions virtually does not differ from the case of the nonlinear Neumann problem considered above. Find-
ing the inverse transform U = L−1[U

__
] is a rather labor-consuming task, while the inverse transform T(r, z, τ)

with the mixed boundary conditions (30) can be determined using formula (6) for the known dependence
λ(T).
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