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Abstract: The problem of robustifying of the sequential probability ratio test
is considered for a discrete hypothetical model. Exact values for error prob-
abilities and for conditional expected sample sizes are obtained. Asymptotic
robustness analysis for these characteristics is performed under “contamina-
tions”. A two-parametric family of modified sequential probability ratio tests
is proposed and analyzed to get the robust test by the minimax risk criterion.
Numerical experiments illustrate the theoretical results.
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1 Introduction

The sequential approach (Wald, 1947; Siegmund, 1985) is often used in many appli-
cations, especially in medical trials (see Whitehead, 1997; Bauer and Röhmel, 1995),
and quality control (see Cowden, 1957), because of two reasons. 1) For some obser-
vation schemes it is natural to follow the sequential approach to construct a probability
model. 2) Sequential statistical procedures have some optimal properties, e.g. the sequen-
tial probability ratio test (SPRT) minimizes the expected sample size (ESS) (see Ghosh,
1970).

The optimal properties of the SPRT are valid only in frames of certain hypothetical
models. In practice, model assumptions are usually not satisfied, a hypothetical model is
distorted. That is why it is important to analyze robustness (Huber, 1981; Stockinger and
Dutter, 1987; Rieder, 1994) of the SPRT, and to construct robust sequential tests, having
some information on admissible distortions. To solve these two problems one needs to
have exact equations for the main characteristics of the SPRT. To obtain such equations is
complicated even for very simple hypothetical models (see Siegmund, 1975).

Some preliminary results on asymptotic performance analysis under distortions are
given in Kharin (2001a,b), for the case of two simple hypotheses testing, in frames of
a discrete hypothetical model. In the paper we propose a family of modified sequential
tests for robustifying of the SPRT, obtain the exact equation for the garanteed upper risk
functional, analyze its asymptotic behaviour and present an algorithm for construction of
the robust sequential test by the minimax risk criterion.

2 Hypothetical Model

Let discrete random variablesx1, x2, . . . be defined on a measurable space(Ω,F), ∀t ∈
N, xt ∈ U = {u1, u2, . . . , uM}, M < +∞, u1 < u2 < . . . < uM . Let these ran-
dom variables be independent identically distributed, according to a discrete probability



268 Austrian Journal of Statistics, Vol. 31 (2002), No. 4, 267-277

distribution with a parameterθ ∈ Θ = {θ0, θ1}:

P (u; θ) = Pθ{xt = u} = a−J(u;θ), t ∈ N, u ∈ U, (1)

a ∈ Q, a > 1, whereJ(u; θ): U × Θ −→ N0 is a function satisfying the condition:∑
u∈U a−J(u;θ) = 1; N, N0, Z, Q, R are the sets of natural, nonnegative integer, integer,

rational and real numbers respectively.
Denote the accumulated likelihood ratio statistic:

Λn = Λn(x1, . . . , xn) =
n∑

t=1

λt, (2)

where

λt = loga

P (xt; θ1)

P (xt; θ0)
= J(xt; θ0)− J(xt; θ1) ∈ Z (3)

is the likelihood ratio statistic calculated on the observationxt. It follows from (1) — (3),
that

Λn = Λn−1 + λn,

λn does not depend onΛn−1, so {Λn} is a Markov chain with discrete time and with
countable state space (see Kemeni and Snell, 1959).

Consider the case of two simple hypotheses with respect to the parameterθ:

H0 : θ = θ0, H1 : θ = θ1. (4)

Such a problem appears often when it is necessary to test the hypotheses on the order of
elements in some sequence, for example, in genetics (Waterman, 1989), (Durbin, 1998),
in quality control (Cowden, 1957), and in sequential signal processing.

To test these hypotheses aftern (n = 1, 2 . . .) observations one makes the decision

d = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn) (5)

according to the SPRT (see Wald, 1947; Siegmund, 1985). The decisionsd = 0 andd = 1
mean stopping of the observation process and the acceptance of the appropriate hypothe-
sis. The decisiond = 2 means that it is necessary to make the(n + 1)-th observation. In
(5) the thresholdsC−, C+ are the parameters of the test. Following Wald (1947), we may
useC+ = [loga ((1− β0)/α0)], C− = [loga (β0/(1− α0))], whereα0, β0 are the given
(“desired”) probabilities of the errors of types I and II respectively, and[·] is used for the
integer part of an argument.

In fact, the true values for the probabilities of the errors of types I and II differ from
α0, β0. Let us obtain the exact equations for the true values of characteristics mentioned
above and for the conditional ESSt(0), t(1).

3 Performance Analysis for the Hypothetical Model

Let 1D(·) be the indicator function of the setD. Introduce the notation:δi,j = {1, if i =
j, 0, if i 6= j} is the Kroneker symbol;Ik is the identity matrix of thek-th order;0m×n
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is the(m× n)-matrix all elements of which are equal to0, 1(u) is the unit step function;
1k is thek-vector-column all elements of which are equal to 1.

For the true hypothesisHk, let t(k) be the expected time before stopping of the decision
process (ESS). Letα, β be the true values of probabilities of the errors of types I and II
respectively for the test (5). LetC−, C+ ∈ Z, N = C+ − C− + 1.

Let us denote fork ∈ {0, 1} the(N ×N)-matrix

P (k) = (p
(k)
ij ) =




I2 | 02×(N−2)

−−− | − −−−−
R(k) | Q(k)


 , (6)

where the blocksR(k), Q(k) are defined as

p
(k)
ij =





∑
u∈U δJ(u;θ0)−J(u,θ1),j−iP (u; θk), i, j ∈ (C−, C+),∑
u∈U 1(C− − i + J(u; θ1)− J(u, θ0))P (u; θk), i ∈ (C−, C+), j = C−,∑
u∈U 1(J(u; θ0)− J(u, θ1) + i− C+)P (u; θk), i ∈ (C−, C+), j = C+,

(7)
and the vector

π(k) = (π
(k)
i ), π

(k)
i =

∑

u∈U

δJ(u;θ0)−J(u;θ1),iP (u; θk), i ∈ (C−, C+); (8)

π
(k)
C+

=
∑

i≥C+

∑
u∈U δJ(u;θ0)−J(u;θ1),iP (u; θk),

π
(k)
C− =

∑
i≤C−

∑
u∈U δJ(u;θ0)−J(u;θ1),iP (u; θk).

Define also the matricesS(k) = IN−2 − Q(k), B(k) = (S(k))−1R(k). Let W(i) denotes the
i-th column of a matrixW .

Theorem 1 (Kharin, 2001b) If under conditions (1) — (4) the true hypothesis is the hy-
pothesisHk, and|S(k)| 6= 0, k ∈ {0, 1}, then for the test (5)

t(k) = (π(k))′(S(k))−11N−2 + 1, α = (π(0))′B(0)
(2) + π

(0)
C+

, β = (π(1))′B(1)
(1) + π

(1)
C− . (9)

4 Asymptotic Performance Analysis under “Contamina-
tions”

Let the hypothetical model (1), (4) be under “contaminations” of Tukey–Huber type (see
Huber, 1981); instead of (1) the observationsx1, x2, . . . belong to a mixtured discrete
probability distribution

P̄ (u; θ) = P̄θ{xt = u} = (1− ε)P (u; θ) + εP̃ (u; θ), t ∈ N, u ∈ U, (10)

whereε ∈ [0, 1
2
) is a probability of “contamination” presence; the “contaminating” prob-

ability distribution is
P̃ (u; θ) = a−J̃(u;θ), (11)

and J̃(u; θ): U × Θ −→ N0 is a function different fromJ(·) and satisfying the norm
condition

∑
u∈U a−J̃(u;θ) = 1.
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Let P̃ (k), π̃(k) be defined similarly toP (k), π(k) according to (6) — (8) by substitution
P̃ (u; θ) instead ofP (u; θ), and be not depend onε. Let Q̃(k), R̃(k) be the blocks of
the matrixP̃ (k), k ∈ {0, 1}. Let π̃

(k)
C± be calculated similarly toπ(k)

C±, k ∈ {0, 1}, with

substitutionP̃ (u; θk) instead ofP (u; θk). Define the matrix̂S(k) = IN−2−Q(k)−ε(Q̃(k)−
Q(k)).

Theorem 2 If the hypothetical model (1), (4) is distorted according to (10), (11), the true
hypothesis isHk, and |S(k)| 6= 0, |Ŝ(k)| 6= 0, k ∈ {0, 1}, then the conditional ESS̄t(k)

and the true probabilities̄α, β̄ of the errors of the types I and II for the distorted model,
differ from the corresponding characteristics for the hypothetical model by the values of
the orderO(ε):

t̄(k) − t(k) = ε
(
(π̃(k) − π(k))′ + (π(k))′(S(k))−1(Q̃(k) −Q(k))

)
×

(S(k))−11N−2 +O(ε2);
(12)

ᾱ− α = ε
(
(π(0))′

(
(S(0))−1

(
(Q̃(0) −Q(0))(S(0))−1R(0) + R̃(0) −R(0)

))
(2)

+

(π̃(0) − π(0))′B(0)
(2) + π̃

(0)
C+
− π

(0)
C+

)
+O(ε2),

(13)

β̄ − β = ε
(
(π(1))′

(
(S(1))−1

(
(Q̃(1) −Q(1))(S(1))−1R(1) + R̃(1) −R(1)

))
(1)

+

(π̃(1) − π(1))′B(1)
(1) + π̃

(1)
C− − π

(1)
C−

)
+O(ε2).

(14)

Proof. It consists of six stages. 1) Define the random sequence

ξn = C+1[C+,+∞)(Λn) + C−1(−∞,C−](Λn) + Λn1(C−,C+)(Λn) ∈ Z, n ∈ N. (15)

2) Prove that the sequence (15) is a Markov chain with discrete time and a countable state
space. 3) Obtain the matrix of the transition probabilities and the vector of the initial
probabilities of the nonabsorbing states for the Markov chain (15) in the form

P̄ (k) = P (k) + ε(P̃ (k) − P (k)), π̄(k) = π(k) + ε(π̃(k) − π(k)), k ∈ {0, 1}, (16)

respectively. 4) Get (12) from (9) and (16). 5) Construct the asymptotic expansion w.r.t.
ε for the difference between the absorption probabilities matrices:

B̄(k) −B(k) = ε(S(k))−1
(
(Q̃(k) −Q(k))(S(k))−1R(k) + R̃(k) −R(k)

)
+O(ε2). (17)

6) Come to (13), (14) by using (17), (16), and (9).

Using this result one can approximate the characteristics of the SPRT under distortions
with the linear accuracy byε. Some numerical results relating such an approximation are
given by Kharin (2001a).
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5 Robustness Characteristics and the Robust Sequential
Test

To robustify the SPRT w.r.t. large deviations from the hypothetical distributions (see
Huber, 1981) ofλt, t ∈ N consider a family of tests, based on the modification of the
SPRT:

dn = 1[C+,+∞)(Λ
g
n) + 2 · 1(C−,C+)(Λ

g
n), (18)

Λg
n =

n∑

i=1

g(λi), λi = J(u; θ0)− J(u; θ1), (19)

whereg(·) is a function, such that

g(z) = g− · 1(−∞,g−](z) + g+ · 1[g+,+∞)(z) + z · 1(g−,g+)(z), (20)

and g−, g+ ∈ R are some parameters,g− < g+. Note, that ifg− < C− − C+, and
g+ > C+ − C−, then the test (18) — (20) turns into the SPRT.

We assume prior probabilitiesπ0, π1 of the hypothesesH0 andH1 respectively to be
known. Lett̄(k)(g(·)) be the conditional ESS under the true hypothesisHk. Let us denote
by ᾱ(g(·)), β̄(g(·)) probabilities of errors of type I and II respectively for the test (18) —
(20) under distortions (10), (11). Letw0, w1 ≥ 0 be the losses, caused by the errors of
type I and type II respectively.

Introduce the robustness characteristics: 1) the risk functional for the distorted model
as the loss function

r(g(·); P̄ (·, ·)) = w0π0ᾱ(g(·)) + w1π1β̄(g(·)), (21)

2) the guaranteed upper risk functional as

r∗(g(·)) = sup
P̃ (·;·)

r(g(·); P̄ (·; ·)), (22)

whereg(·) is defined by (20).
Consider a random sequence

ξn(g(·)) = C−1(−∞,C−](Λ
g
n) + C+1[C+,+∞)(Λ

g
n) + Λg

n1(C−,C+)(Λ
g
n), (23)

whereΛg
n is defined in (19).

Lemma 1 For the considered model the random sequence (23) is a Markov chain withN
states, the statesC− andC+ are absorbing; if the true hypothesis isHk, then the one-step
transition probabilities matrix has the form

P̄ (k)(g(·)) = (p̄
(k)
ij (g(·))) =




I2 | 02×(N−2)

−−−− − −−−−
R̄(k)(g(·)) | Q̄(k)(g(·))


 , (24)
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where the blocks̄R(k)(g(·)), Q̄(k)(g(·)) are given by

p̄
(k)
ij (g(·)) =





∑
u∈U δg(J(u,θ0)−J(u;θ1)),j−iP̄ (u; θk), j ∈ (C−, C+),∑
u∈U 1(−∞,C−](g(J(u, θ0)− J(u, θ1)) + i)P̄ (u; θk), j = C−,∑
u∈U 1[C+,+∞)(g(J(u, θ0)− J(u, θ1)) + i)P̄ (u; θk), j = C+,

(25)
i ∈ (C−, C+),

and the vector of initial probabilities of nonabsorbing states is given by

π̄(k)(g(·)) = (π̄
(k)
i (g(·))) =




π̄
(k)
C−+1(g(·))

...
π̄

(k)
C+−1(g(·))


 ,

π̄
(k)
i (g(·)) =

∑

u∈U

δg(J(u;θ0)−J(u;θ1)),iP̄ (u; θk), i ∈ (C−, C+). (26)

Proof. To prove Lemma 1 it is enough to apply the aggregation criterion for the Markov
chainΛg

n with the countable set of states (see Kemeni and Snell, 1959).

Introduce the initial probabilities for accepting of hypotheses

π̄
(k)
C+

=
∑

i≥C+

∑

u∈U

δg(J(u;θ0)−J(u;θ1)),iP̄ (u; θk), π̄
(k)
C− =

∑

i≤C−

∑

u∈U

δg(J(u;θ0)−J(u;θ1)),iP̄ (u; θk),

(27)
and the matrices̄S(k)(g(·)) = IN−2 − Q̄(k)(g(·)), B̄(k)(g(·)) = (S̄(k)(g(·)))−1R̄(k)(g(·)),
k ∈ {0, 1}.

Theorem 3 For the distorted model (2) — (4), (10), (11), if the test (18) — (20) is used,
and|S̄(k)(g(·))| 6= 0, k ∈ {0, 1}, then

t̄(k)(g(·)) = (π̄(k)(g(·)))′(S̄(k)(g(·)))−11N−2 + 1,

ᾱ(g(·)) = (π̄(0)(g(·)))′B̄(0)
(2)(g(·)) + π̄

(0)
C+

(g(·)),
β̄(g(·)) = (π̄(1)(g(·)))′B̄(1)

(1)(g(·)) + π̄
(1)
C−(g(·)).

Proof. It is done by applying the absorbing Markov chain theory (Kemeni and Snell,
1959) and Lemma 1 to the sequence (23).

Let P̃ (k)(g(·)), π̃(k)(g(·)), andπ̃
(k)
C±(g(·)) be calculated similarly to (24) — (27), re-

spectively, by substitutioñP (·; ·) instead ofP̄ (·; ·), and Q̃(k)(g(·)), R̃(k)(g(·)) be the
blocks of the matrixP̃ (k)(g(·)), k ∈ {0, 1}. Introduce the matrix̂S(k)(g(·)) = IN−2 −
Q(k) − ε(Q̃(k)(g(·))−Q(k)).

Corollary 1 Under the Theorem 3 conditions, if|Ŝ(k)(g(·))| 6= 0, k ∈ {0, 1}, then

t̄(k)(g(·))− t(k) = ε
(
(π̃(k)(g(·))− π(k))′ + (π(k))′(S(k))−1(Q̃(k)(g(·))−Q(k))

)
×

(S(k))−11N−2 +O(ε2);
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ᾱ(g(·))− α = ε
(
(π(0))′

(
(S(0))−1((Q̃(0)(g(·))−Q(0))(S(0))−1R(0)+

R̃(0)(g(·))−R(0))
)

(2)
+ (π̃(0)(g(·))− π(0))′B(0)

(2) + π̃
(0)
C+

(g(·))− π
(0)
C+

)
+O(ε2),

β̄(g(·))− β = ε
(
(π(1))′

(
(S(1))−1((Q̃(1)(g(·))−Q(1))(S(1))−1R(1)+

R̃(1)(g(·))−R(1))
)

(1)
+ (π̃(1)(g(·))− π(1))′B(1)

(1) + π̃
(1)
C−(g(·))− π

(1)
C−

)
+O(ε2).

Proof. The scheme of this proof is similar to the proof of Theorem 2.

Let us denote:

Ug+ = {u ∈ U : u = arg maxu∈U g(J(u; θ0)− J(u; θ1))},
Ug− = {u ∈ U : u = arg minu∈U g(J(u; θ0)− J(u; θ1))}. (28)

Theorem 4 If the hypothetical model (1) — (4) is under distortions (10), (11) and the test
(18) — (20) is used, then the guaranteed upper risk functional (22) is

r∗(g(·)) = r(g(·), P̃∗(·; ·)), (29)

where “the worst probability distribution”P̃∗(·; ·) satisfies the conditions

∑

u∈Ug+

P̃∗(u; θ0) = 1,
∑

u∈Ug−

P̃∗(u; θ1) = 1. (30)

Proof. To maximize the risk functional (21) it is sufficient to maximize error probabili-
ties of the type I and II. By choosing̃P (u; θ0) we maximizeᾱ(g(·)), and byP̃ (u; θ1) —
β̄(g(·)). Having solved these maximization problems, we come to (28), (30), and there-
fore, we get (29).

Denote byge(·) the identity function:ge(z) ≡ z, z ∈ Z. Let us indicate by the
subindex(·)∗ the fact that the “worst probability distribution”̃P∗(·; ·) has been used for
calculation of the characteristic(·).

Corollary 2 Under the Theorem 4 and Corollary 1 conditions the guaranteed upper risk
functional (22) satisfies the asymptotic expansion

r∗(g(·)) = r(ge(·); P (·; ·))+
ε

(
w0π0

(
(π(0))′

(
(S(0))−1

(
(Q̃

(0)
∗ (g(·))−Q(0))(S(0))−1R(0) + R̃

(0)
∗ (g(·))−R(0)

))
(2)

+

(π̃
(0)
∗ (g(·))− π(0))′B(0)

(2) + π̃
(0)
∗C+

(g(·))− π
(0)
C+

)
+

w1π1

(
(π(1))′

(
(S(1))−1

(
(Q̃

(1)
∗ (g(·))−Q(1))(S(1))−1R(1) + R̃

(1)
∗ (g(·))−R(1)

))
(1)

+

(π̃
(1)
∗ (g(·))− π(1))′B(1)

(1) + π̃
(1)
∗C−(g(·))− π

(1)
C−

))
+O(ε2).

(31)
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Proof. To prove Corollary 2 it is sufficient to represent (29) in the form (21). Using it and
the result of Corollary 1, we come to (31).

Corrollary 2 states, that the increment of the guaranteed upper risk functional under
distortions of a levelε, w.r.t. the risk functional of the SPRT without distortions, has the
first order w.r.t.ε:

r∗(g(·))− r(ge(·), P (·, ·)) = O(ε).

It is reasonable to minimize the coefficient atε, indicated in Corollary 2, by choosing of
g−, g+.

Using the result of Theorem 4, and Corollary 2, let us propose the criterion for the
robust test construction. For a fixed parameter1 ≤ Ct < +∞, define the robust test by
the minimax risk criterion, as a solution of the extremal problem

{
r∗(g(·)) −→ ming(·),
π0t̄

0(g(·)) + π1t̄
1(g(·)) ≤ Ct(π0t

0 + π1t
1),

(32)

where a set of admissible functionsg(·) : Z −→ Z is given by (20). The restriction on the
ESS means that the ESS of the robust test should be not more thanCt times greater than
the ESS for the SPRT for the hypothetical case. This problem can be solved numerically,
varying parametersg−, g+ through the set of admissible values. One of the possible
algorithms is simply to try all the integer values betweenC− and C+, which has the
computational complexityO(N2). If there is no solution, then the value ofCt sholud be
increased.

Let us also mention a simple approach to robustify the SPRT for the situation, where
J(u; θ) > 0, u ∈ U , θ ∈ Θ. To avoid large influences of a “contaminating” distribution,
we can use the following function, without solving (32),

g(z) = z(1− 1{λmax,λmin}(z)) + δλmax,z − δλmin,z, (33)

whereλmax = maxu∈U (J(u; θ0)− J(u; θ1)), andλmin = minu∈U (J(u; θ0)− J(u; θ1)).
For a nonsingular caseλmax ≥ 1, λmin ≤ −1. The test (33) is not the robust test by the
minimax criterion (32), but it is easy constructed. The formula (33) means that the influ-
ence of a summand into (19) under distortions should be less than the maximal possible
influence without distortions.

6 Results of Experiments

Let us illustrate the theoretical results by the results of numerical experiments in the ex-
ample:a = 2, M = 10, U = {1, 2, . . . , 10}, the functionsJ(u; θ0), J(u; θ1) are defined
by the following table.

u 1 2 3 4 5 6 7 8 9 10
J(u; θ0) 1 2 3 4 5 6 7 8 9 9
J(u; θ1) 3 2 4 5 6 7 8 9 9 1

Let the contaminating distribution bẽP (10; θ0) = 1, P̃ (u; θ0) = 0, u ∈ U \ {10};
P̃ (1; θ1) = 1, P̃ (u; θ1) = 0, u ∈ U \ {1}. For this caseλmax = 8, λmin = −2. Choose
α0 = β0 = 0.01. For this caseC− = −6, C+ = 7.
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In Figure 1 we present the results of statistical simulation for the sum of conditional
error probabilitiesᾱ(g(·)) + β̄(g(·)). The results are presented for three tests: for the
classical Wald SPRT, and for two its modifications. The first modification corresponds
to the the robust sequential test by the minimax risk criterion, obtained as the solution of
(32) for small values ofε. This test is correspondent to the valuesg− = −1, g+ = 2. The
second modification is obtained with the valuesg− = −1, g+ = 5, and is robust by the
minimax risk criterion forε > 0.33.

In Figure 2 the results of statistical simulation for the sum of conditional expected
sample sizes̄t(0)(g(·)) + t̄(1)(g(·)) are given for the same three tests.

Figure 1: Dependencies of estimates ofᾱ(g(·)) + β̄(g(·)) on ε

Figure 2: Dependencies of estimates oft̄(0)(g(·)) + t̄(1)(g(·)) on ε



276 Austrian Journal of Statistics, Vol. 31 (2002), No. 4, 267-277

7 Conclusion

The results of the paper give a possibility to calculate the robustness characteristics of a
sequential test from the considered family of tests, and to construct the robust test under
“contaminations” w.r.t. the minimax criterion. In practice, the exact value of the “con-
tamination” probability is unknown, but usually an information of the typeε ≤ ε+ is
available. For such a case, using the monotonicity of the risk functional w.r.t. the value
of ε, one can get the upper esimates for the error probabilities, for conditional ESSs, and
for the guaranteed upper risk functional. These results are obtained for the discrete prob-
ability distributions of observations. The same methodology is shown to be useful for the
absolutely continuous case (see Kharin, 2002).
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