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Abstract: The problem of sequential testing of composite hypotheses is con-
sidered. Asymptotic expansions are constructed for the conditional error
probabilities and expected sample sizes under “contamination” of the prob-
ability distribution of observations. To obtain these results a new approach
based on approximation of the generalized likelihood ratio statistic by a spe-
cially constructed Markov chain is proposed. The approach is illustrated nu-
merically.
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1 Introduction
Sequential testing of hypotheses (Wald, 1947) is used as an adequate statistical method-
ology in applications where not only accuracy (percentage of correct decisions), but also
the number of observations used is important: medicine (Jennison and Turnbull, 2000),
quality control, finance (Ghosh and Sen, 1991), etc.

In the applications sequential methods are often applied to “contaminated” data (see
Huber, 1981), and this fact results in significant increasing of percentage of incorrect de-
cisions (A. Kharin, 2002); the optimal properties of sequential procedures (see Aivazian,
1959) become to be broken. Some results on robustness analysis of sequential tests for
simple hypotheses case are presented in Quang (1985); A. Kharin (2002); A. Y. Kharin
and Kishylau (2005). The robust sequential tests are constructed in case of simple hy-
potheses for several models of data in A. Kharin (2002); A. Kharin and Kishylau (2005).

In this paper we evaluate robustness of the conditional error probabilities and expected
sample sizes under “contamination” of the probability distribution of data for composite
hypotheses.

2 Mathematical Model
Let on a measurable space (Ω,F) a random sequence x1, x2, . . . ∈ R with an n-variate
probability density function (pdf) pn(x1, . . . , xn | θ) be observed, where n ∈ N =
{1, 2, . . .}, θ ∈ Θ ⊆ Rk is an unknown value of the random vector of parameters. The pdf
p(θ) of the parameter θ is supposed to be known. Consider two composite hypotheses:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1, (1)

where Θ0 ∪Θ1 = Θ, Θ0 ∩Θ1 = ∅.
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To construct a sequential test for the hypotheses (1) in the considered Bayesian setting,
let us use the method of weight functions proposed in Wald (1947). Introduce the notation:

1S(s) =
{

1, s ∈ S,
0, s 6∈ S,

is the indicator function of a set S;

Wi =
∫

Θi

p(θ)dθ, wi(θ) =
1

Wi

p(θ)1Θi
(θ), θ ∈ Θ, i = 0, 1;

Λn = Λn(x1, . . . , xn) = log

∫
Θ w1(θ)pn(x1, . . . , xn | θ)dθ∫
Θ w0(θ)pn(x1, . . . , xn | θ)dθ

. (2)

The following parametric family of sequential tests is used in the notation (2) for the
hypotheses (1):

N = min {n ∈ N : Λn 6∈ (C−, C+)} , (3)

d = 1[C+,+∞)(ΛN), (4)

where N is the random number of observation (stopping time), at which the decision d
is made according to (4). The decision d = i means that the hypothesis Hi, i = 0, 1, is
accepted; C− < 0, C+ > 0 are two parameters of the test (3), (4). In Wald (1947) the
following expressions are used for these parameters:

C− = log
β0

1− α0

, C+ = log
1− β0

α0

, (5)

where α0, β0 are maximal admissible values for the error type I (acceptH1 providedH0 is
really true) and type II (accept H0 provided H1 is really true) probabilities, β0 < 1− α0.

The true values α, β of the error type I and II probabilities differ from α0, β0 (see
e.g. A. Kharin, 2002), and calculation of these characteristics is an important problem
(Lai, 2001) in the aspect of quantitative robustness analysis. It is also important to get
expressions for calculation of conditional mathematical expectation of the sample size N
for the sequential test (3), (4) with the fixed parameters (5).

3 Approximation of the Random Sequence Λn by a
Markov Chain

Let us split the state space R of the sequence Λn on m + 2 “cells”:

A0 = (−∞, C−); Ai = [Ci−1, Ci), i = 1, . . . , m; Am+1 = [C+, +∞),

where m ∈ N,

h =
C+ − C−

m
; C− = C0 < C1 < · · · < Cm−1 < Cm = C+, Ci = C− + i · h.

Introduce the notation: Sm
1 = {A1, . . . , Am} is the set of the intervals; pΛn(u) is the pdf

of the generalized likelihood ratio statistic (2); pΛn+1|Λn(u | y) is the conditional pdf of
Λn+1 provided Λn = y, n ∈ N.
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Theorem 1 Let Λn be a Markov sequence, ∀θ ∈ Θ the pdf’s pΛ1(u), pΛn+1|Λn(u | y), n ∈
N, be differentiable functions of the variable u ∈ [C−, C+], and ∃c1, c2, 0 < c1, c2 < ∞:

|p′Λ1
(u)| ≤ c1; |p′Λn+1|Λn

(u | y)| ≤ c2, u, y ∈ [C−, C+], n ∈ N. (6)

Then for n ∈ N, k ∈ {1, . . . , n− 1}, satisfying

P
{
Λn−k∈An−k, . . . , Λn∈An

}
> 0, An−k, . . . , An ∈ Sm

1 ,

the asymptotic expansion at h → 0 (m →∞) holds:

P
{
Λn+1∈An+1 | Λn∈An, . . . , Λn−k∈An−k

}
= P

{
Λn+1∈An+1 | Λn∈An

}
+ RΛ(h),

(7)
where

An−k, . . . , An∈Sm
1 , RΛ(h) =

{
O(h2), if An+1∈Sm

1 ,
O(h), if An+1∈{A0, Am+1}.

Proof. Denote the left and right bounds of the interval Aj , j∈N, by aj
L, aj

R, respectively.
First, prove (7) for k = 1, An+1 ∈ Sm

1 :

P
{
Λn+1∈An+1 | Λn∈An, Λn−1∈An−1

}
= P

{
Λn+1∈An+1 | Λn∈An

}
+O(h2). (8)

From the definition,

P
{
Λn+1∈An+1 | Λn∈An, Λn−1∈An−1

}
=

P {Λn+1∈An+1, Λn∈An, Λn−1∈An−1}
P {Λn∈An, Λn−1∈An−1} .

(9)
Transform the numerator of (9) using the Markov property of Λn:

P
{
Λn+1∈An+1, Λn∈An, Λn−1∈An−1

}
=

P
{
an−1

L ≤ Λn−1 < an−1
R , an

L ≤ Λn < an
R, an+1

L ≤ Λn+1 < an+1
R

}
=

∫ an−1
R

an−1
L

pΛn−1(u)
∫ an

R

an
L

pΛn|Λn−1(y | u)
∫ an+1

R

an+1
L

pΛn+1|Λn(z | y) dz dy du. (10)

From the property of a Markov sequence and the condition (6) it follows that ∃c > 0:

∀n ∈ N, |p′Λn
(u)| ≤ c < ∞, u ∈ [C−, C+].

Using the rectangular approximation formula (see, e.g. Bahvalov, 1973), we get

P
{
Λn+1∈An+1, Λn∈An, Λn−1∈An−1

}
=

h3 · pΛn−1

(
an−1

R + an−1
L

2

)
· pΛn|Λn−1

(
an

R + an
L

2

∣∣∣a
n−1
R + an−1

L

2

)
×

pΛn+1|Λn

(
an+1

R + an+1
L

2

∣∣∣a
n
R + an

L

2

)
+O(h4). (11)
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For the denominator of (9) we get analogously:

P
{
Λn ∈ An, Λn−1 ∈ An−1

}
=

h2 · pΛn−1

(
an−1

R + an−1
L

2

)
· pΛn|Λn−1

(
an

R + an
L

2

∣∣∣a
n−1
R + an−1

L

2

)
+O(h2). (12)

Using (11), (12) in (9) and then performing asymptotic expansion, we find

P
{
Λn+1 ∈ An+1 | Λn ∈ An, Λn−1 ∈ An−1

}
=

h · pΛn+1|Λn

(
an+1

R + an+1
L

2

∣∣∣a
n
R + an

L

2

)
+O(h2). (13)

By similar transformations for the conditional probability from the right side of (8) we
find

P
{
Λn+1 ∈ An+1 | Λn ∈ An

}
= h · pΛn+1|Λn

(
an+1

R + an+1
L

2

∣∣∣a
n
R + an

L

2

)
+O(h2). (14)

Comparing (13) and (14), we get (8).
For An+1 ∈ {A0, Am+1} the scheme of the proof is the same, except integration on z

in (10), where the rectangular approximation formula is not applied. For this case we get:

P
{
Λn+1 ∈ An+1 | Λn ∈ An, Λn−1 ∈ An−1

}
= P

{
Λn+1 ∈ An+1 | Λn ∈ An

}
+O(h).

(15)
Summarizing (8) and (15), we get (7) for k = 1.

The scheme of the proof of the result (7) for k = 2, 3, . . . is the same as for k = 1.

Note, that the main term in the asymptotic expansion (7) has the order O(h) for
An+1 ∈ Sm

1 , and O(1) for An+1 ∈ {A0, Am+1}.
Let [x] mean the integer part of x (maximal integer number, which is not greater than

x). For the random sequence Λn introduce the discrete random sequence Zm
n , n ∈ N,

with the finite state space V = {0, 1, . . . , m + 1}:

Zm
n =





0, if Zm
n−1 = 0,

m + 1, if Zm
n−1 = m + 1,([

Λn−C−
h

]
+ 1

)
· 1(C−,C+)(Λn) + (m + 1) · 1[C+,+∞)(Λn), otherwise;

(16)
Zm

0 = 0.

Would the remainder term RΛ(h) in (7) be equal to 0, the random sequence (16)
should be a Markov chain. Theorem 1 states that the Markov property is approximately
valid for the sequence (16), and gives the accuracy for this approximation.

Introduce the matrix of the size (m + 2)× (m + 2) of the conditional probabilities for
the random sequence (16):

P (n)(θ) = (pn
ij(θ)) =

(
P

{
Zm

n+1 = j | Zm
n = i

})
, i, j ∈ V, n ∈ N.
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Note, that the theory of calculation of the characteristics for Markov chains is much better
developed than for Markov sequences, so let us consider an approximation of Zm

n by
the Markov chain zm

n ∈ V , n ∈ N, that has the initial probability distribution and the
transition probabilities matrix P (n)(θ) the same as for the sequence (16).

Because {0}, {m + 1} are absorbing states, it is convenient to renumerate the states:
V = {{0}, {m + 1}, {1}, . . . , {m}}. The matrix P (n)(θ) after renumeration can be rep-
resented in the form:

P (n)(θ) =




I2 | 02×m

−−− −−− −−−
R(n)(θ) | Q(n)(θ)


 , ∀θ ∈ Θ, (17)

where R(n)(θ) and Q(n)(θ) are blocks of the size m× 2 and m×m respectively, Ik is the
identity matrix of the size k, 02×m is the matrix of the size 2×m with all elements equal
to 0. Introduce the notation: π(θ) = (πi(θ)) is the vector of initial probabilities of the
states 1, . . . , m for the sequence (16), π0(θ) and πm+1(θ) are the initial probabilities of
the absorbing states 0 and m + 1 respectively for (16); 1m is the vector of the size m with
all components equal to 1; γHi

(θ) = P{d = i | θ}, i = 0, 1, is the conditional probability
to accept the hypothesis Hi provided the parameter takes the value θ ∈ Θ; matrices S(θ)
of the size m×m and B(θ) of the size m× 2 are

S(θ) = Im +
∞∑

i=1

i∏

j=1

Q(j)(θ), B(θ) = R(1)(θ) +
∞∑

i=1

i∏

j=1

Q(j)(θ)R(i+1)(θ);

B(j)(θ) is the j-th column of the matrix B(θ), j = 1, 2; t(θ) = E{N | θ}, ti = E{N | θ ∈
Θi} (i = 0, 1) are the conditional sample sizes; t = E{N} is the unconditional sample
size.

Theorem 2 Under the Theorem 1 conditions, if a sequential test from the family (3), (4)
is used for the hypotheses (1), then ∀θ ∈ Θ at h → 0 the probabilistic characteristics of
the test satisfy the following asymptotic expansions:

t(θ) = 1 + (π(θ))′ · S(θ) · 1m +O(h),

γH0(θ) = (π(θ))′B(1)(θ) + π0(θ) +O(h), γH1(θ) = (π(θ))′B(2)(θ) + πm+1(θ) +O(h).

Proof. The proof consists of two stages.
1. Calculation of the main terms in the asymptotic expansions for E{N | θ} and

γHi
(θ), i = 0, 1. These terms are calculated as the appropriate characteristics for the non-

homogeneous Markov chain zm
n , n ∈ N (see, e.g. Kemeni and Snell, 1959) with the state

space V (two of the states are absorbing: {0} and {m + 1}), initial probabilities vector
of transient states π(θ), initial probabilities of absorbing states π0(θ), πm+1(θ), and the
transition probabilities matrix P (n)(θ) presented in the form (17).

2. Asymptotic analysis of the remainders at h → 0. The result of Theorem 1 is
applied to analyze the differences between the characteristics of the random sequence
(16) and the Markov chain zm

n ; the relation h = (C+ − C−)/m is used, where m is the
size of the square matrix Q(n)(θ) and the number of rows in the matrix R(n)(θ).
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Corollary 1 Under the conditions of Theorem 2, the error type I and II probabilities
satisfy the asymptotic expansions:

α =
∫
Θ

(
(π(θ))′B(2)(θ) + πm+1(θ)

)
w0(θ) dθ +O(h);

β =
∫
Θ

(
(π(θ))′B(1)(θ) + π0(θ)

)
w1(θ) dθ +O(h).

(18)

Corollary 2 Under the conditions of Theorem 2, the following asymptotic expansions for
conditional and unconditional mathematical expectations of the sample size hold:

ti = 1 +
∫
Θ(π(θ))′ · S(θ) · 1m · wi(θ) dθ +O(h), i = 0, 1;

t = 1 +
∫
Θ(π(θ))′ · S(θ) · 1m · p(θ) dθ +O(h).

(19)

4 Case of Independent Observations with the Gaussian
Probability Distribution

Consider the model of data frequently used in practice, where the observations x1, x2, . . .
are independent identically distributed random variables with the Gaussian probability
distribution having the pdf

p(x | θ) = n1(x; θ, σ2
x) = (2πσ2

x)
− 1

2 e
− 1

2σ2
x

(x−θ)2

, x ∈ R. (20)

Suppose the random parameter θ also has the Gaussian probability distribution with pdf

p(θ) = n1(θ; µ, σ2
θ), θ ∈ Θ = R. (21)

The values σx > 0, σθ > 0, µ ∈ R are known. The hypotheses H0, H1 correspond to the
sets

Θ0 = (−∞, θ̄), Θ1 = [θ̄, +∞). (22)

Introduce the notation: Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy is the standard Gaussian probability
distribution function;

B = log
W0

W1

, D− = C− −B, γ2 =
σ2

x

σ2
θ

;

ln(y) =
√

n
y − θ̄ + γ2(µ− θ̄)/n

σx

√
1 + γ2

n

, Ψn(y) = log
Φ(ln(y))

Φ(−ln(y))
, y ∈ R;

Ξ(θ) =

(
Φ

(√
n

Ψ−1
n (ih + D−)− θ

σx

)
− Φ

(√
n

Ψ−1
n ((i− 1)h + D−)− θ

σx

))−1

;

φ
(n)
i,j (θ) = Ξ(θ)

Ψ−1
n (ih+D−)∫

Ψ−1
n ((i−1)h+D−)

n1

(
y; θ,

σ2
x

n

)
Φ

(
(n + 1)Ψ−1

n+1(jh + D−)− ny − θ

σx

)
dy,

φ
(n)
i,m+1(θ) = 1, φ

(n)
i,−1(θ) = 0, θ ∈ Θ, i, j = 1, . . . ,m.
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Theorem 3 If the model (20) – (22) is valid, then ∀θ ∈ R the conditional probabilities
for the random sequence (16) in the blocks Q(n)(θ), R(n)(θ) of the matrix (17) are

p
(n)
ij (θ) = φ

(n)
i,j (θ)− φ

(n)
i,j−1(θ), i = 1, . . . , m, j = 0, 1, . . . , m + 1; (23)

the initial probabilities for the sequence (16) are given by the expressions:

πi(θ) = Φ

(
Ψ−1

1 (D− + ih)− θ

σx

)
− Φ

(
Ψ−1

1 (D− + (i− 1)h)− θ

σx

)
, i = 1, . . . , m,

π0(θ) = Φ

(
Ψ−1

1 (D−)− θ

σx

)
, πm+1(θ) = 1− Φ

(
Ψ−1

1 (D− + mh)− θ

σx

)
. (24)

Proof. For the model (20) – (22) we get the following representation of the generalized
likelihood ratio statistic (2) by equivalent transformations:

Λn = B + Ψn

(
x̄(n)

)
, x̄(n) =

1

n

n∑

i=1

xi. (25)

Note, that Ψn{·} is a strictly increasing function. Representing the random events related
to the random sequence Λn as the random events related to x̄(n), n ∈ N, and using the
properties of the function Φ(·), we come to (23), (24).

Let us note that the conditions of Theorem 2 are satisfied for this model, because the
statistic x̄(n) is a Markov sequence, and from (25) it follows that Λn is also a Markov
sequence.

5 Results of Numerical Experiments
A series of numerical experiments was performed to illustrate the results presented by
Corollaries 1, 2 and Theorem 3. The probability model (20) – (22) of observations was
considered, and the hypotheses (22) were tested for the following values of parameters:

θ̄ = 0, µ ∈ {−0.5,−0.25}, σx = 1, σθ = 0.5.

The Monte-Carlo estimates were computed for the type I error probability α and for
the conditional mathematical expectation of the sample size t0, when the test (3), (4) is
used (these estimates are denoted by α̂ and t̂0 respectively); the number of replications
for both values of µ was equal to 10000. The parameters C−, C+ of the test (3) were
calculated according to (5), where α0 = β0 = 0.1. The results are presented in Table 1.

For comparison, the approximations of α and t0 were computed as the main terms
in the asymptotic expansions (18), (19) using (23), (24) for m ∈ {2, 4, 6, 8, 10}; these
approximations are denoted by αm and (t0)m respectively. The results are also given in
Table 1.

It can be seen from Table 1 that even with small values of m ≥ 8 the results of
approximation are very close to the Monte-Carlo estimates, and could be used in practice
for calculation of the characteristics of the sequential test (3), (4). Similar results were also
obtained for the error type II probability β and the conditional mathematical expectation
of the sample size t1.
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Table 1: Results of numerical experiments

Approxi- m Monte-Carlo
mations 2 4 6 8 10 Estimates α̂, t̂0

Case of µ = −0.5
αm 0.13 0.10 0.09 0.07 0.07 0.07
(to)m 11.6 12.3 13.9 15.5 15.3 14.8

Case of µ = −0.25
αm 0.06 0.03 0.05 0.09 0.09 0.09
(to)m 12.8 15.3 19.9 17.0 19.2 18.8

6 Robustness Evaluation under “Contamination” of Hy-
pothetical Probability Distributions of Observations

In practice the observed data usually do not follow the hypothetical model exactly, the
hypothetical model is distorted (see Hampel, Ronchetti, Rousseeuw, and Stahel, 1986).
The model of “contamination” of the hypothetical probability distributions (see Huber,
1981) is often used to analyze robustness of the statistical procedures.

Suppose the hypothetical model considered in Section 2 is distorted: the data observed
are really obtained from a “contaminated” probability distribution with a pdf

p̄n(x1, . . . , xn | θ) = (1− ε)pn(x1, . . . , xn | θ) + εp̃n(x1, . . . , xn | θ), xi ∈ R, θ ∈ Θ,
(26)

where p̃(x1, . . . , xn | θ) is a “contaminating” pdf, ε ∈ [0, 1/2) is a probability of “con-
tamination” presence (“contamination” level).

Introduce the notation: π̃(θ), π̃0(θ), π̃m+1(θ), Q̃(n)(θ), R̃(n)(θ) are the elements calcu-
lated analogously to π(θ), π0(θ), πm+1(θ), Q(n)(θ), R(n)(θ) replacing the hypothetical pdf
pn(x1, . . . , xn) with the “contaminating” pdf p̃n(x1, . . . , xn) in the probability distribution
of the random sequence (2); ∆π0(θ) = π̃0(θ) − π0(θ), ∆π1(θ) = π̃m+1(θ) − πm+1(θ);
t̄(θ) and γ̄Hi

(θ) (i = 0, 1) are the conditional mathematical expectation of the sample size
and the conditional probability of acceptance of the hypothesis Hi respectively, provided
the parameter value is θ, for the distorted model (26).

Theorem 4 For the distorted model (26), if the conditions of Theorem 2 are valid, then
∀θ ∈ Θ, the following asymptotic expansions hold at ε → 0, h → 0:

t̄(θ)− t(θ) = ε

(
(π̃(θ)− π(θ))′S(θ) + (π(θ))′

∞∑

l=1

l∑

j=1

j−1∏

k=1

Q(k)(θ)×

(Q̃(j)(θ)−Q(j)(θ))
l∏

k=j+1

Q(k)(θ)

)
1m +O(ε2) +O(h);

γ̄Hi
(θ)− γHi

(θ) = ε

(
∆πi(θ) + (π̃(θ)− π(θ))′B(i+1)(θ) + R̃(1)(θ)−R(1)(θ) +

∞∑

l=1

(
l∑

j=1

j−1∏

k=1

Q(k)(θ)(Q̃(j)(θ)−Q(j)(θ))
l∏

k=j+1

Q(k)(θ)R(l+1)(θ) +
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l∏

j=1

Q(j)(θ)(R̃(l+1)(θ)−R(l+1)(θ))

))
+O(ε2) +O(h), i = 0, 1.

Proof. The proof consists of two stages.
1. Calculation of the characteristics for the Markov chain which has the state space

V , the initial probabilities vector (π̄0(θ), π̄(θ), π̄m+1(θ))
′ and the transition probabilities

matrix

P̄ (n)(θ) =




I2 | 02×m

−−− −−− −−−
R̄(n)(θ) | Q̄(n)(θ)


 ,

where
π̄i(θ) = (1− ε)πi(θ) + επ̃i(θ), i ∈ V,

R̄(n)(θ) = (1− ε)R(n)(θ) + εR̃(n)(θ), Q̄(n)(θ) = (1− ε)Q(n)(θ) + εQ̃(n)(θ).

2. Asymptotic analysis at ε → 0, h → 0 of the correspondent differences between the
calculated characteristics under “contamination” and their hypothetical values, using the
results of Theorem 2.

Note, that it follows from Theorem 4, that the indicated differences of the character-
istics t̄(θ), γ̄Hi

(θ), i = 0, 1, from the hypothetical values t(θ), γHi
(θ), for the sequential

test (3), (4) under the “contamination” (26), have the first order by ε.
Using the result of Theorem 4 one can approximate the characteristics of the sequen-

tial test (3), (4) under the distortion (26), and use these approximation in construction of
the robust sequential test by the minimax criterion (see A. Kharin, 2002).

7 Conclusion
In this paper the approach to calculate with a given accuracy the characteristics of sequen-
tial tests is proposed for composite hypotheses. This approach is used for quantitative ro-
bustness analysis of sequential tests under “contamination” of the probability distribution
of observations. The results can be used for minimax robust sequential test construction.
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