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Abstract

The paper focuses on robust estimation and forecasting techniques for grouped binary data with
misclassified responses. It is assumed that the data are described by the beta-mixed hierarchical
model (the beta-binomial or the beta-logistic), while the misclassifications are caused by the
stochastic additive distortions of binary observations. For these models, the effect of ignoring the
misclassifications is evaluated and expressions for the biases of the method-of-moments estimators
and maximum likelihood estimators, as well as expressions for the increase in the mean square error
of forecasting for the Bayes predicior are given. To compensate the misclassification effects, new
consistent estimators and a new Bayes predictor, which take into account the distortion model, are
constructed. The robusiness of the developed techniques Is demonstrated via computer simulations
and a real-life case study.
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1 Introduction

Grouped binary data frequently arise in longitudinal studies that are carried out over a
group of similar objects (Diggle et al. 2002). A natural way to describe this kind of data
i5 using the binomial model (Collet 2002). However, the binomial model often leads
to inaccurate statistical inference due to the so called “over-dispersion” effects (Brooks
2001). These effects may occur for two main reasons (Neuhaus 2002): (i) intergroup
correlation, i.e. violation of the independence assumption of the experiment outcomes
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for a particular object, and (ii) intragroup correlation caused by the heterogeneity among
objects. So, special “random effects” models are used to describe the heterogeneity and
correlated outcomes (Coull and Agresti 2000).

The beta-mixed hierarchical models of grouped binary data are widely used in
practical applications when information about experiment conditions is not available.
The most popular models of this class are the beta-binomial model (BBM) that supposes
that the data on object properties are not available, and the beta-logistic model (BLM)
that supposes that they are known. The BBM was originally proposed by Pearson (1925),
formalized by Skellam (1948) and is associated with many useful results in applied
statistics due to its conjugate property (Prentice 1988) that allows avoiding numerical
integration while using Bayes approach for forecasting of response probabilities (Slaton
et al. 2000). The BLM is an extension of the BEM that was proposed by Heckman and
Willis (1977); it is widely used in economics, biometrics, political sciences and other
applications (Pfeifer 1998; Nathan 1999).

In real life, the observed binary outcomes are often misclassified (Neuhaus 1999),
and the classical statistical procedures that are optimal for the hypothetical model may
lose their “good™ properties under distortions (Kharin 1996). Hence, it is important
to analyze the sensitivity of the classical estimators and predictors w.r.t. response
misclassifications and, if needed, to develop new statistical procedures that are robust to
these distortions (Huber 1981; Hampel e al. 1986). Although a number of papers have
been published on robustness of the linear mixed model (Gill 2001), logistic regression
(Kordzakhia er al. 2001), binomial model {(Ruckstuhl and Welsh 2001), inference for
dichotomous survey data (Gaba and Winkler 1992), and on the Bayesian identifiability
problem of multinimial data with misclassifications (Swarzt ef al. 2004), these results
can not be directly applied to the grouped binary data due to their specific property.

The literature review shows that little research has been done on investigation
the robustness issue for the special models of the grouped binary data. The major
contribution to this domain has been done by Neuhaus, who has extended his general
results for the binary regression models under response misclassifications (Neuhaus
1999) to the clustered and longitudinal binary data case. In his recent work, Neuhaus
(2002) obtained expressions for the parameter bias and developed methods for consistent
estimation for the population-averaged models (Lijang and Zeger 1986). He also
examined a special case of the cluster-specific models (Zeger and Karim 1991),
the logistic normal model, which is an extension of the logistic regression to the
grouped binary data case. However, as noted by Neuhaus (2002), “the derivation of
bias expressions for nonlogistic links will require a different approach than for the
logistic™ since the specific property of the logistic link function was used to obtain the
CXpressions.

This paper focuses on the robustness issues for the beta-mixed hierarchical models
under stochastic additive distortions of binary observations. These models belong to
the cluster-specific type but have not been addressed in the related works yet. The
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remainder of the paper is organized as follows. Section 2 is devoted to the problem
statement and definition of the related mathematical models. Section 3 concentrates
on the robust estimation of the beta-binomial model parameters, while Section 4 deals
with the same problem for the beta-logistic model. Section 5 is dedicated to the robust
forecasting based on the beta-mixed hierarchical models (both beta-binomial and beta-
logistic ones). Section 6 presents an application example and evaluation of the developed
methods for a real-life case study. Finally, Section 7 summarizes the main contributions

of the paper.

2 Mathematical models and research problems

Let us consider k clusters with the covariates Z; € R™,i = 1,...,k, and let B; =
(Bi, B, ..., Bi,) €10, 1}™ be the binary responses of n; Bernoulli trials over the cluster
i. Let us also assume that the following two assumptions hold.

Al. Within the cluster i, the success probability p; is a random variable that follows the
beta distribution with the true unknown parameters a° = f,(Z), B° = fu(Z),
where f(.): R* = R*, fa(.) : R" = R*,

A2. Random variables py, p1, ..., pi are independent in total.

Let us refer to the defined above data model as the beta-mixed hierarchical model of

the grouped binary data. In this paper, we focus on two models of this type that are

frequently used in practical applications (the beta-binomial and the beta-logistic), which
are specified as follows:

BBM: [fo(Z)=a®, foZ)=p", ni=n;
model parameters: n€ N, a”,f°€R.

BLM: f4(Z) = exp(Z] "), f5(Z) = exp(Z]b");
model parameters: ny,...,n; € N, a°,b® € R™.

For the BBM, it is assumed that the number of Bernoulli trials n; = n is the same for
all clusters and n is known a priori. Estimation of the remaining BBM parameters a®, 5°
is performed (Tripathi ef al. 1994) using the method of moments (explicit expressions)
or the method of maximum likelihood (numerical algorithm). For the BLM, the number
of Bernoulli trials n; may vary across the clusters and is also known a priori, while
the other parameters a°,b° are estimated using the maximum likelihood numerical
algorithm (Slaton er al. 2000).

One of the main problems for the grouped binary data that is strongly motivated by
practical applications, is the forecasting of the success probabilities py, . . ., p; for for the
future trials using the past binary outcomes B = (B, ..., B} obtained for small sample
sizes n; that are too small to have accurate traditional estimator p; = n; ' x? (Collet 2002).
For the beta-mixed hierarchical models, this problem is solved via the Bayes predictor
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function (Diggle er al. 2002)
Py = (@ + D) /(a? + B + ny), (1

where .t.':" = E;‘:lﬂ.-j. I =12,...,k are the sums of the binary outcomes within the
cluster. This predictor ensures the minimal mean square error of forecasting when the
consistent estimators of the model parameters Ia?.ﬂ?] are used.

Suppose now that the original binary data B are contaminated by the stochastic
additive binary distortions (5;;), and we observe the distorted binary responses B

Bij = By @y (2)
with the misclassifications defined as
Piﬂq = IIBJJ = l':I]- = Eijis F{B.‘J- = ﬂlﬂu = l] = £y, {3}

where @ is the modulo 2 sum, and gy, £, < 1 are the distortion levels which can be
either known or unknown (Copas 1988). In this settings, two main research problems
arise:
(i) Evaluation of the effects of ignoring the misclassifications for the classical model
parameter estimation techniques and response probability forecasting methods.
(i) Construction of new estimation and prediction methods, which take into account
the distortion model and compensate the misclassification effect.

In the remaining sections, these problems are solved separately for the BBM
and BLM parameler estimation, while the forecasting is examined and enhanced
simultaneously for both of them. For the first problem, the estimation bias and the
increase in the mean square error of forecasting are evaluated via asymptotic expansions.
For the second one, new estimation and forecasting methods, which are based on the
obtained probability distribution of the distorted data, are proposed.

It should be noted that for the BBM (Section 3), the paper considers the case of equal
group sizes since it is typical for many application areas that exploit this model. The
assumption n; = n allows obtaining simple expressions and helps to develop intuition
about the distortions influence on the BBM inference. However, the results for the BBM
with different [n;} can be easily obtained as a special case of the BLM results (Section
4), where the covariates {Z;} are the same for all clusters.

For further convenience, let us introduce the following notation: MM-estimator —
the method of moments estimator, ML-estimator— the method of maximum likelihood
estimator, o(£), ((&) —Landau symbols for £ — 0, ¥, = Op(Z,)- probability Landau
symbol for random sequences ¥, Z, € R. The detailed definition of Op(.) and the proofs
of theorems are given in Mathematical Appendix.
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3 Robust estimation of the beta-binomial model

Distorted beta-binomial distribution. Let x; be the number of successes for the i-th
cluster: x; = X7, By, i =1,...,k The following theorem defines the probability
distribution of the random variable x; under the distortions (2), (3).

Theorem 1 The probability distribution of the distorted beta-binomial random variable
x; can be represented as a weighted sum

P.(@,B,80,81) = ), Wrs(&0,€0) - Pi(a.B). @)
=0

where { P2} are the non-distorted probabilities for the BEM with the parameters n,a,

_[n Bl + s,8+n—5)
Fﬂ{mﬁ}—(s) Rl

B(.) is the complete beta function, and the weights for the distortion levels &y, £\ are
computed as

min(a,.s+r)
Wi £, €1 } e (

ff , )(’:: E ]Efl-i{] —Eu}ﬂ—-fd—r{l _Ei}ﬂ-r-f’ s,r=01,...,n
Imnax(s,r) o

Using this theorem, it can be proved that the mean and variance of the distribution
(4) are

B e, Vi) = soll-g0)—— +£1(1-61)— +(1-€€1 Vo,

+8 a+p8 a+ a+f

where Vy = (naB(a+B+n)) [((a+BY*(a+B+1)) is the variance of the non-distorted BBM.
Let us refer to the distribution (4) as the distorted beta-binomial distribution (DBBD)
with the parameters n, a, 8, &g, £- _

As follows from the theorem proof (see Appendix), the weights w,, can be treated
as the probabilities that the distorted value r was originated from the non-distorted sum
of the binary outcomes . It should be noted that when &, = & = 0, the proposed
distribution (4) is identical to the classical beta-binomial distribution (BBD) with the
parameters n, &, 8, and the weight matrix W = (wy;) is the identity one. If the distortion
levels are small, the matrix W can be approximated by the asymptotic expansion

Efxi} = o~

Wieg, 1) = I + W, - g0 + W, - &1 + o(&0. 1), (5)
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where / is the identity matrix, and the matrices W, , W, are calculated as

( —n 0 0 ... 0) 0 | 0 ... 03

n =(n=1) 0 ... 0 o0 -1 2 ... 0

Hf;uz 0 n-1 =-{n=-2) ... 0 \ “.r;= o o0 -2 ... 0
. 0 0 0 ... 0, L0 0 0 ... -n|

The expression (5) allows obtaining the following asymptotic relation between the
distorted P, (&, £1) and the original P? probabilities

Prgg, &) = PE' +{{ﬂ -r+ 1},!"','5'_l - (n— r]Pf}-.E:n. + [l;r + ]}F‘L - rPf) £y + ol&p, £1),
(6)

where P? = P? = 0. This expression can be employed to assess the sensitivity of
the beta-binomial distribution to the distortions (2), (3). In the following subsection, the
result of Theorem 1 and the expression (6) are used to evaluate the sensitivity of the
classical BBM estimators.

Robustness of the classical estimators. Let o 5° be the true unknown values of the
BBM parameters, and let Ad(go, £), AB(£p, £1) be the biases of the parameter estimators
that ignore the misclassifications with the levels g, £,. The following theorems evaluate
the robustness of the classical MM and ML-estimators via their biases w.r.t. the
distortion levels.

Theorem 2 The bias of the classical MM-estimator of the BBM parameters, which
ignores the misclassifications, satisfies the following asymptotic expansion

_[ 2" +28°+1 @+ 1)/p° En]+(ﬂ{£m£1]+ﬂr(lfﬁ}

apom )|
BB+ Dja® 2a°+8+1 [l o(g, £1) + Op(1/ Vk)

ABum ) -

Theorem 3 The bias of the classical ML-estimator of the BBM parameters, which
ignores the misclassifications, satisfies the asymptotic expansion

( JI-'1~E.'M'I.) _ (Hu Hyz )_1( G Gz ) Eﬂ) L [ ol&0. &) + Op(1/ '\'II-"-'I}) (8)
AB i Hy Hp Gy Gn | \& olgo, &1) + 0p(1/ Vi) |
where explicit expressions for the matrices H, G are given in Mathematical Appendix.

As follows from these theorems, the classical MM and ML-estimators of the BBM
parameters become biased and inconsistent under the distortions. Expressions (7), (8)
allow assessing the sensitivity of these estimators to the misclassifications (3). Let us
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now construct consistent and unbiased estimators that take into account the distortion
model (2), (3).

Robust estimation in the case of known distortion levels. Let us consider the case
when the distortion levels &9,£, are known a priori. Denote the émpirical moments
of the order r as m; = k™! ¥} | x/. The following theorems define consistent and
asymptotically unbiased MM and ML-estimators for the case of known &g, £,.

Theorem 4 The consistent and asymptotically unbiased MM-estimator, which takes
into account the distortion model (2), (3), is expressed as

da(m}, £9) - p(my, m3, €9, £)
Guym = =

'3 - 6ﬁ{mri £1)- “{m:.r m;'l £, €1 :I
'ﬁ{mim m;: £0s IE'I:‘. MM

ﬁ{ﬂi;. mi" £p, £ J

(2

¥

where

Oq =m) —ney, &g =n-m| -ne, pu=mn-m, = (&odg + mig)(n - 1),

A=(l-& ~&) (m;n - min - m}*(n - [}}.

Theorem 5 The consistent and asymptotically unbiased ML-estimator. which takes into
account the distortion model (2), (3), can be derived by applying the classical ML.-
estimator to the filtered empirical probabilities

Pl = > vieo,&1) - Pileo, £1), (10)
=0

where {Py,..., B} is the empirical probability distribution of the distorted sample
(X1, %2, ..., X}, and v,; are the elements of the inverted weight matrix W from Theorem
1:V =) = W, des(W)=0.

Let us refer to the above estimators as the modified MM-estimator (MMM -estimator)
and the modified ML-estimator (MML-estimator) respectively. It should be noted that
the filtration approach (Theorem 5) is not limited to the maximum likelihood technique,
it can also be used together with other known estimation methods developed for the
classical (non-distorted) beta-binomial distribution. A good review of these methods
can be found in (Tripathi et al., 1994),

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BBM parameters o, 8 and the distortion levels E0, £1
are unknown. For simultanecus consistent estimation of a, 8 and &, £), two numerical
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algorithms are proposed; the first employs the method of moments and the second
utilizes the maximum likelihood approach.

For the method of moments, the simultaneous estimation problem can be reduced to
the solution of the following system of two nonlinear equations for the third and fourth
order moments

my = ma(a(eo, £1). B(&0. £1), €0,€1),  my = ma(a(ep, £1), B(€0, 81),£0,£1),  (11)

where the functions a(eg, £,), B(sp, £)) are expressed explicitly (see Theorem 4) from
the equations for the first and second order moments

m: = m](ﬂ',ﬂ,ﬂﬂ, E'}f m; = m‘l{ﬂ'rﬁ! ED'IEIJ' {12}

Here m; = k' Bt xf, r = 1,2,3,4; while m,(a,B, &o,) are the corresponding
theoretical moments for the DBEBD with the parameters n,a,pf, £y, £ that can be
computed using Theorem 1. To solve the equations (11), let us apply the modified
Newton method. Denote by Jf the 2x2 Jacobi matrix of the system (11) on the condition
that the equations for the first two moments (12) hold. Then the iterative procedure for
the solution of (11) is expressed as

)= (5 ) a o (7 ety b e
(& )=(2 )2 i} — ma(a(ely &), Bl &), ) |0 1)

where 4 € (0, 1] is the algorithm parameter that ensures the convergence for large
distortion levels &g, &; (Demidovich and Maron 1970). All expressions required for
the numerical implementation of the procedure (13) are given in the Mathematical
Appendix. As follows from the numerical experiments, the usual value A = 1 (typical
for the classical Newton technique) provides poor convergence, so it is prudent to
start iterations with rather low A and gradually increase it so that it becomes close
to 1 in the neighborhood of the desired solution. It can be done using the recursive
sequence A = A -(1-46)+86, where 4y and @ are the tuning parameters. During
the computer simulations that will be discussed below, the authors used the following
values: 45 = 0.1, & = 0.05. Let us refer to the estirhates of the model parameters a, 8
and the distortion levels &, £, obtained using the procedure (13) as the MMS-estimates.

. For the maximum likelihood approach, the simultaneous estimation is reduced to the
following constrained maximization problem

A
f{ﬂ',ﬁ,ﬂ-‘u,-ﬁ'.) = Zﬂ lﬂ[P,-{ﬂ,ﬁ,Eﬂ,E]}} —* ﬂm P ﬂliﬂ e R+1 En. E) € [ﬂ'l IL {]4}
r=I0 -

where {fo, fi,...,/z} are the frequencies for the distorted sample {x;,x2,...,x), and
the explicit expressions for the distorted beta-binomial probabilities P,(.) are given in
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Theorem 1. This maximization problem is solved using the modification of the steepest
descent method. All the expressions required for the numerical implementation are given
in Mathematical Appendix. Let us refer to the estimates of «, B and &g, £, obtained from
(14) as the MLS-estimates.

Computer simulations. To demonstrate the robustness of the proposed estimators of
the BBM parameters, a series of four computer simulations was done. Tt was assumed
that the true values of the model parameters were a® = 0.5, g% = 9.5, n = 10. These
values are typical for the application area that the authors deal with (see Section 6).

Experiment 1. This experiment was dedicated to assessing the sensitivity of the beta-
binomial distribution to the distortions (Theorem 1). There were generated k = 1000
realizations of the random variable from the DBBD with the parameters n, a¥, A° and the
distortion levels & = 0.01, & = 0.02. For the generated sample, there were computed
the empirical probabilities Py, r=0,1,...,n, as well as the sample mean and variance.
Also, there were calculated the weight matrix W, the theoretical probabilities P, and P7,
the approximate values P¢ for P, (the asymptotic expansion (6)), and the theoretical
mean and variance for the BBD and DBBD.

As follows from the experiment results (Tables 1-3), the original beta-binomial
distribution is quite sensitive to the distortions. For example, the relative difference
between the non-distorted P° and distorted P, probabilities can go up to 24.9%, and
the mathematical expectation and variance can differ by 17.0% and 3% respectively.
The corresponding weight matrix W (see Table 3) has the dominated leading diagonal
and the adjacent elements, that explains why the linearized expressions (6) provide
an accurate enough approximation of the probabilities P,. This result validates using
of stochastic expansions for assessing the sensitivity of the classical estimation and
prediction techniques with respect to the distortion levels.

Table 1: Comparison of the original, distorted and empirical mean and variance.

Distribution type Mean Variance
Classical beta-binomial distribution 0.500 0.929
Distorted bela-binomial distribution 0.585 0.957
Empirical distribution 0.577 0.943

Table 2: Comparison of the original, distorted and empirical probabilities for the BEM.

r 0 1 2 3 4 5 6 7 8 9 10
<107 =10 x10 ¢ =10 =102 x107* =107 x107* x107* =107 x107
693 187 723 292 1.5 430 146 434 106 191 191
630 234 840 324 125 454 150 436 104 180 LT3
6278 239 8§22 321 124 452 150 435 1.03 180 172
637 234 833 319 117 500 095 250 150 000 1.91

by P Ju iy
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Table 3: Elemenis of the weight matrix W for the disiortion levels g5 = 0.01, & = 0.02.

0

2

3

4

5

&

7

B

9

o0 B W R =

0.9044
0.0914
0.004:2
0.0001
~107%
~10°%
~]0- 1
__.l,n-li
___]ﬂ,—lj
'-'lﬂ_”
~10~%

0.0183
0.8969
0.0815
0.0033
0.0001
~107%

~107#

~10-10
~10-12
~1071
~10718

0.0004
0.0362
0.8891
0.0717
0.0025
0.0001
~107%

~107#

'-]ﬂ'_”

~10-1
~10"1®

~107%

0.0011
0.0538
0.8811
0.0621
0.0019
~107*

~10"7

~107°

__":y—ll
___“}-I-l.

~107

~107%

0.0022
0.0710
0.8727
0.0527
0.0013
~107*

~1077

~107%

Al 12

~1077

~107%
0.0001
0.0036
0.0879
0.8641
0.0435
0.0009
~107%

~107*

el u--lﬂ-

~10-10
~10°8
~10°%
0.0001
0.0053
01044
0.8551
0.0344
0.0005
~10°¢
~10%

™ 12
=10~ (1]
~1077
~107%
0.0003
0.0074
0.1206
0.8460
0.0256
0.0003
~107¢

_"]—H
] “—l 1
~1077
~1077
~107*
0.0004
0.0097
0.1363
(0.B366
0.0169
0.0001

T e
ﬂ-lﬂ‘_ﬁ
__].u—ll
~107%
~1077
~1073
0.0006
0.0124
0.1517
0.8269
0.0083

~10*
0.0008
0.0153
0.1667
0.8171

Experiment 2. This experiment was devoted to assessing the bias of the classical
BBM parameter estimators that ignore the misclassifications (Theorems 2, 3). There
were generated 100 independent random samples of size k = 1000 from the BBM with
the parameters n, a®, £°. It was assumed that gy = £, €[ 0; 0.02] and they varied with the
step 0.002, and each sample was contaminated according to the distortion model (2), (3).
For each distorted sample and for each value of the distortion level, the classical MM and
ML methods were applied. Then, for all values of &g, £, the 95%-confidence intervals
of the a, B estimates were computed (using the common technique, which assumes that
the estimates follow the normal distribution). Finally, for the same distortion levels, the
theoretical biases were obtained using the stochastic expansions (7), (8).

The results of the experiment are presented in Figure 1, where p(.) is the relative
bias (i.e. Aa/a® or AB/BP). As follows from the figure, the stochastic expansions (7), (8)
provide good approximation of the parameters biases caused by the distortions with
the levels £y, £ < 0.01. Besides, the classical estimators are quite sensitive to the
distortions. For example, for the distortion levels g4 = £; = 0.01, the relative errors for
the parameters a, 8 are respectively 50%, 22.7% for the the MM-estimator and 52.7%,
28.0% for the ML-estimator.

e s e mmrn =g LR e LT T
= Pkl o morzarmis . | et i e |} :
Pl ey 1] : Lok t'r-_n_Jl-“'
Ll L] i ! Tk i [ ]
WE=ccdass= | Np—— L “"""l"":'"':""
i : ;ﬂl,“- ' ¥ -
L Cdessataaad u.".-.:",.:.....-'.
Y I I
b mmdemeages=g M-

i T oL
i [ %
Figure 1: The biases of the classical MM- and ML-estimators of the BBM parameters, which ignore the

misclassifications: gray tubes —experimental 95% confidence intervals; solid lines- approximation via the
asymplotic expansions (7), (8); p —the relative bias, e~ the distortion level (gy=£) ).

However, for practical applications, it is also important to analyze the sensitivity of
another BBM parametrization (Prentice 1986): # = a/(a+8), ¥ = 1/(a +8), where n is
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the average response probability, and v is a measure of the inter-group correlation. For
this parametrization, the relative errors of the MM and ML-estimators for the parameters
m,y are 20.9%, 19.4% and 17.7%, 22.6% respectively. It means that ignoring response
misclassifications leads to quite large errors when assessing both the average response
probability for the clusters and the inter-group correlation between units. This numerical
result emphasizes the importance of the research topic and motivates development of
new robust estimators, which take the distortion model into account.

It should be noted that Neuhaus (1999, 2002) performed similar computer
simulations for the binary regression, as well as for the population-averaged and the
mixed-effects logistic models. In his simulation, Neuhaus was interested in the bias
of the regression coefficients and made a conclusion that the biases due to response
misclassifications were negligible for small values of the distortion levels and were
substantial only when £¢,£, = 0.10. Since our experiments yielded qualitatively
different results (see Figure 1), this fact should be explained in details,

For the comparison purposes, the beta-mixed hierarchical model considered in
this paper (both BBM and BLM) can be reformulated as a special case of the
generalized linear mixed model (GLMM), which is an extension of the generalized
linear model (GLM) to the longitudinal or clustered data case. The reformulation can
be done by introducing dummy constant covariates for each cluster/unit, and choosing
an appropriate link function and a random effects distribution. Then the regression
coefficients can be considered as the beta-mixed hierarchical model parameters, and
their sensitivity to the distortions can be investigated using technique employed in
this paper. Hence, the above model conversion can be treated as a specific nonlinear
re-parametrization of the beta-mixed hierarchical model, which leads to completely
different meaning of the model parameters.

For this re-parametrization, the parameter estimator sensitivity w.rt. the
misclassifications may increase, depending on the true values of the parameter. For
instance, for small values of m (which are typical for our application area), the
misclassifications essentially influence the estimate #, since E{x;/n} = go(1-n)+(1=€) ).
Thus, when 7 = 0.05 and & = & = 0.01 the expectation of x;/n is equal to 0.059,
1.e. misclassifications cause 18% increase of the corresponding parameter value. This
Justifies the qualitative difference of the Neuhaus’ and ours simulation results.

Therefore, the obtained results show that the beta-binomial model parameter
estimators are less robust to the response misclassifications compared to the estimators
for the models investigatéd by Neuhaus. This emphasizes the research topic importance
and motivates development of robust estimators for the BBM. It should be also noted
that the robust estimation approach for the logistic-normal model that was employed by
Neuhaus (2002) can not be applied to the BBM since he used specific properties of the
logistic link function that the beta-binomial distribution does not possess.

Experiment 3. This experiment was aimed at the performance evaluation of the
proposed robust estimators in the case of known distortion levels (Theorems 4, 5). It
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was assumed that £, = £ = 0.01, and the developed MMM and MML-estimators
were compared to the classical MM and ML-estimators by assessing the biases,
standard deviations, and histograms. As follows from the experiment results (Figure
2), the proposed estimation methods allow essentially decreasing the bias of the a,f
estimates and lead to the smaller standard deviation while compared to the classical
estimators. In particular, the MMM -estimator yields the relative biases 2.0%, 2.1%
for the parameters a, 8 respectively against 47.7%, 25.2% obtained by applying the
classical MM technique. The MML-estimator ensures the relative biases 0.9%, 1.1%
in contrast to 54.2%, 30.3% for the classical ML method. These results confirm the
robust performance of the proposed estimators.
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Figure 2. Histograms of the classical and proposed estimators of the BBM parameters for known distortion
levels: [ —empirical frequency, yu— sample mean, o —sample standard deviation; the circles denote the true
parameler values,

Experiment 4. This experiment focused on the performance evaluation of the
proposed robust estimators in the case of unknown distortion levels. It was assumed
that g5 = £) = 0.01, and the developed MMS and MLS-estimators were compared to
the classical MM and ML-estimators by assessing the biases and standard deviations.
As follows from the experiment results (Table ), the proposed estimation techniques
allow essentially decreasing the bias of the a, 8 estimates, while the standard deviation
increases compared to the classical estimators. In particular, the MMS-estimator yields
the relative biases 2.0%, 3.2% for the parameters a, B respectively against 46.0%, 24.3%
obtained by applying the classical MM technique. The MLS-estimator ensures the
relative biases 6.0%, 1.2% in contrast to 52.0%, 29.3% for the classical ML method. On
the other hand, the standard deviation increases up to twice compared to the classical
methods that ignore the misclassifications. This effect is caused by the identification of
two extra parameters £, £, in addition to «, 8 that normally leads to extra variation.

Advantages of the developed methods were also confirmed by additional numerical
research aimed at the identifiability analysis, which was based on computing of the
determinant and condition number for the relevant Jacobi matrices. For the MMS-
estimator, there were examined both the full 4 x4 Jacobian of the system (11), (12) and
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the reduced 22 Jacobian, which is used in the numerical procedure (13). During the
simulation, the determinant of the full Jacobian was far from zero and varied from 0.01
to 0.10 that confirms the identifiability. However, the corresponding condition number
was rather high (from 5.8-10° to 1.4-10), that validates using of the proposed iterative
procedure (13), which employs inversion of the 2x2 matrix with much better condition
number (from 55.4 to 73.8). For the ML S-estimator, there was examined the 434 matrix
of the second derivatives for the log-likelihood function (14). Its determinant was greater
then 10° that indicates the identifiability of all model parameters. But the corresponding
condition number varied from 5.2-10° to 7.8-10® that explains slow convergence of
the optimization routine (approximately 85 times slower then for the MMS-estimator)
due to the ravine structure of the objective function. Nevertheless, the MLS technique
gives better estimation results in comparison with the MMS (in 48% of simulation runs,
the MLS biases were smaller then the MMS biases for all four parameters, in 27% of
runs —for three parameters, in 19% of runs— for two parameters, in 5% of runs —for
on¢ parameter, and only in 1% of runs the MMS dominated over the MLS for all the
parameters). These results confirm both the identifiability and the robust performance
of the developed estimators.

Table 4: Comparison of the classical and proposed estimators of the BBM for unknown

distortion levels.
Parameter @ B
{true value 0.5) (true value 9.5)
Method MM ML MMS MLS MM ML MMS MLS
Mean 0.73 0.76 0.49 053 11.81 12.28 9.20 9.39
Standard deviation 0.12 0.11 0.21 0.22 2.01 1.97 2.63 0.71

4 Robust estimation of the beta-logistic model

Robustness of the classical ML-estimator. Let a°, 5° be the true unknown values of the
BLM parameters, and let Ad(gy, £,), Ab(sp, £1) be the biases of the parameter estimators
that ignore the misclassifications with the levels &g, £,. The following theorems evaluate
the robustness of the classical ML-estimator via its bias w.r.t. the distortion levels.

Theorem 6 The bias of the classical ML-estimator of the BLM parameters, which
ignores the misclassifications, satisfies the following asymptotic expansion

()= (3)orfomerofl)

under the assumption that the covariates Z; belong to the countable set
{th,?,..., 8 CR™i=1,2,....k, all vectors (#,} are equiprobable, and the clusters

(13)
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with the same covariates #, have equal group sizes hy, where 1a, is a vector of ones of
size 2m, and H, G are (2m x 2m), (2m % 2) matrices given in Mathematical Appendix.

As follows from the theorem, the classical ML.-estimator of the BLM parameters
becomes biased and inconsistent under the distortions. Expression (15) allows assessing
the sensitivity of this estimator to the misclassifications (3). Let us now propose
consistent and unbiased estimators that take into account the distortion model (2).

Robust estimation in the case of known distortion levels. Consider the case when
the distortion levels g, €, are known a priori. First, let us obtain a stochastic expansion
for the biases that differs from (13) by taking into account an observed sample X =
(1, %2, ..., X}

Theorem 7 For the observed sample X, the bias of the classical ML-estimator of the
BLM parameters, which ignores the misclassifications, satisfies the following asymptotic

expansion
ﬂf‘? =J'](a“b“.lf}-g{a°b"xs 1)+ oy lo{ep, 1)+ O . (16)
Ab * ¥ £ » kg Sy i ] 2m 0 &1 P ’l.ﬂi-' )

where the (m x m)-matrix J(.) and the m-vector 2.(.) are defined in Mathematical

Appendix.

Then, the expansion (16) allows constructing a bias compensating procedure for the
classical ML -estimator

@ LY =@ By - 4. 7@ B X) - g(@ b, X, £, £1), (17)

where ¢ is the iteration number and A is the algorithm parameter that ensures
convergence. The parameter A is selected in the similar way as for the numerical
procedure (13) from Section 3: A4,,, = A (1 =8)+86. In the given below computer
simulations, the authors used values Ap = 0.1, & = 0.05. Let us refer to the bias-
corrected ML-estimator (17) as the modified ML-estimators (MML).

Robust estimation in the case of unknown distortion levels. Let us now consider
a general case when both the BLM parameters a, b and the distortions levels &g, £}
are unknown. For simultaneous consistent estimation of a,b and £, £;,, a maximum
likelihood based numerical algorithm is proposed.

Using results from Section 3, the log-likelihood function for the BLM that
accommodates the distortion model (2), (3) may be expressed as

k ny
le(a, b, X, £0,81)= ) lug[z wf,tjfau_s.}-f’j(a*b]} (18)

=1 =0
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where

B (aia)+ j, Bi(b)+n;— j)
B (ai(a), Bi(b))

Pja, 5’7'=(:f ) aia) = exp(Z]a), Bi(b) = exp(Zb),

B(.) is the complete beta function, and wi' ; are the weights of the distorted beta-
binomial distribution with the parameters n;, a;(a), 5:(b), £0, £, (see Theorem 1). Then,
the simultaneous estimation of the BLM parameters and the distortion levels is reduced
to the following constrained maximization problem

l(a,b,X,&9,£1) = max, a,beR", g,& €[0,1]. (19)

a,bEg,E)

The problem (19) is solved using the gradiemt descent method; all the required
expressions are given in the Mathematical Appendix. Let us refer to the estimates of
a, b and gy, £, obtained from (19) as the MLS-estimates.

Computer simulations. To demonstrate the robust performance of the developed
methods for the estimation of the BLM, a number of computer simulations was done. It
was assumed that the true values of the parameters were g =1, =2, Vi, n;= 10, k=
1000, and the covariates Z; € R were uniformly distributed on the segment [1.0; 1.1].
This range of the covariates corresponds to the intervals o € [2.7; 3.0], B € [7.4; 9.0]
that is typical for the application area the authors deal with (see Application Example).
The simulations included three experiments.

Experiment I. This experiment was devoted to assessing the bias of the classical
ML -estimator of the BLM parameters that ignores the misclassifications (Theorem 6).
There were generated 100 independent random samples of size k = 1000 from the
BLM with the parameters a°, °. It was assumed that sy =&, €[ 0; 0.05] and they varied
with the step 0.01, and each sample was contaminated according to the distortion model
(2), (3). For each distorted sample and for each value of the distortion level, the classical
ML method was applied. Then, for all values of £, £;, the 95%-confidence intervals
of the a,b estimates were computed (assuming that the estimates follow the normal
distribution). Finally, for the same distortion levels, the theoretical biases were obtained
using the stochastic expansion {15).

As follows from the experiment results (Figure 3), the stochastic expansion (15)
provides good approximation of the parameters biases caused by the distortions with
the levels g9, £) < 0.05. Besides, the classical ML-estimator is quite sensitive to the
distortions. For example, for the distortion levels g = £, = 0.05, the relative errors
for the parameters a,b are 39.2%, 12.1% respectively. It should be noted that the
higher parameter biases in comparison with the results of Neuhaus (1999) for the
binary regression are due to the specific nonlinear parametrization of the beta-mixed
hierarchical models (for details, see the above discussion in the Computer Simulation
subsection for the BEM).
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Figure 3: The biases of the classical ML-estimator of the BIM parameters, which ignores the
misclassifications: gray tubes —experimental 95% confidence intervals; solid lines— approximation via the
expansion {15); Aa, Ab —the relative bias, & the distortion level fEa=£; ).

Experiment 2. This experiment was aimed at the performance evaluation of the
proposed robust estimator in the case of known distortion levels (Theorem 7). It was
assumed that gy = £, =0.03 , and the developed bias-corrected estimator was compared to
the classical ML -estimator by assessing the biases, standard deviations, and histograms.
As follows from the experiment results (Figure 4), the proposed estimation method
allows essentially decreasing the bias of the a,b estimates and leads to the similar
standard deviations. In particular, the bias-corrected estimator yields the relative biases
2.3%, 1.1% for the parameters a,b respectively against 23.1%, 8.2% obtained by
applying the classical ML technique.

The identifiability of the model parameters a, b and convergence of the numerical
procedure (17) are determined by the properties of the 2 x 2 matrix of the second
derivatives J for the BLM log-likelihood function (which does not take into account
the distortion model). Additional numerical research indicated that the determinant of
this matrix was greater then 10°, while the corresponding condition number varied from
38.4 to 51.7. These results confirm both the identifiability and the robust performance
of the bias-corrected estimator.
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Figure 4: Histograms of the classical and proposed estimators of the BIM parameters for known distortion
levels: [ —empirical frequency, y— sample mean, & —sample standard deviation: the circles denote the true
parameter values.

Experiment 3. This experiment focused on the performance evaluation of the
proposed robust estimator in the case of unknown distortion levels. It was assumed
that g = £, = 0.03, and the developed MLS-estimator was compared to the classical
ML-estimator by assessing the biases and standard deviations. As follows from the
experiment results (Table 5), the proposed estimation technique allows essentially
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decreasing the bias of the a, b estimates, while the standard deviation is approximately
the same in all cases. In particular, the MLS-estimator yields the relative biases 4.1%,
1.6% for the parameters a, b respectively against 23.0%, 7.5% obtained by applying the
classical ML technique.

To analyze the identifiability of the parameters a, b, £p, £, and the convergence of
the developed MLS estimation algorithm, there was examined the 4 x4 matrix of the
second derivatives for the log-likelihood function (18), which takes into account the
distortion model. Its determinant was greater then 107 that indicates the identifiability
of all model parameters. But the corresponding condition number varied from 1.3-10° to
5.1-10* that explains relatively slow convergence of the optimization routine due to the
ravine structure of the objective function. However, the computing time is acceptable
for practical applications. These results confirm both the identifiability and the robust
performance of the developed MLS-estimator.

Table 5. Comparison of the classical and proposed estimators of the BLM for unknown

distortion levels.
Parameter a b
(true valpe 1.0) {true value 2.0)
Method ML MLS ML MLS
Mean 1.23 1.04 2.15 2.03
Standard deviation .11 0.12 0.11 0.11

5 Robust forecasting for beta-mixed hierarchical models

Robustness of the classical Bayes predictor. First, let us analyze the robustness of the
classical Bayes predictor (1), which incorporates the true values of the model parameters
a?, B, assuming that the predictor input x; = Ej;l B;; is contaminated by the distortions
with known levels &, &, (here, the subscript i denotes the index of the cluster, for
which the forecast is performed). The following theorem evaluates the robustness of the
classical Bayes predictor w.r.t. the distortion levels by assessing the increase of the mean
square error of forecasting.

Theorem 8 If the classical Bayes predictor (1) uses the true model parameters u‘:'.], ﬁ?,
then the mean square error of the forecast, which is based in the misclassified responses,
is expressed as

m(ﬁ?ﬂn -+ ﬂ':?-ﬁ't] + ngl-l{[ﬁ?}lhlsﬁ _ M?ﬁfﬁ'nm + (af"}ﬂ”gf}

P o=
where rﬁi is the error in the non-distorted case (gg=£,=0)
o3ff

2 = _
@+ B! + B+ ny)
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Then, let us consider the case when the true values of the parameters a?, §° are
unknown, so their estimates &;, #; (biased because of the distortions) are used for
the prediction. The following theorem evaluates the robustness of the classical Bayes

predictor in this case.

Theorem 9 If the classical Bayes predictor (1) uses the biased estimates &;, B of the
model parameters, then the mean square error of the forecast, which is based in the
misclassified responses, is expressed as

nBO -0 + ali-e1) AP 2 - 20080-e06, + a??.e2)

»  (21)

=P+ +
YT @+ BOYG + i + ) (a? + B2 (&; + B; + n)?

where % is the error in the case of the non-distorted responses but the biased parameter
esimates - -

L _ mafBd + a2 — 2008088, + 0PV IR7 o

o (@? + B2 )(&; + B; + n;)? '
the coefficients i, rf are
O+ 18 - (4; + 1 O+ 1) — (B; + 1a®

T _ | _
S D+ + 1

and the ascending and descending factorials are denoted as vi?*) = yy + 1), y12-) =
wy— 1)

As follows from these theorems, the classical Bayes predictor loses its optimality
under the distortions (in the sense of the mean square error of forecasting).
Expressions (20), (21) allow assessing the sensitivity of the classical predictor to the
misclassifications (3). Let us propose now the robust predictor that takes into account
the distortion model (2).

Robust prediction under distortions. Since the results from the previous sections allow
obtaining the unbiased estimates of the model parameters as well as the probability
distribution of the misclassified responses, there can be derived the optimal predictor that
minimizes the effect of the misclassifications in the forecast input data. This predictor is
defined in the following theorem.

Theorem 10 The optimal Bayes predictor, which takes into account the distortion
model (2), (3), is expressed as the weighted sum

[!'n+.l"

hl- . § %y ¥ = 3 ﬂ‘ * L % 1'4'
Pi(x) = E{pjlx, &0, £1} ; * I T (24)
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where x is the sum of the distorted binary observations for the i-th cluster, and the
weighting coefficients , are computed from

ny =1
&, = ( )wf B(al+r,B) +n;—r) [ Z ('}‘ )wjﬁ B{¢?+£.ﬂ?+m-f}] (25)
i=0
using expressions for wif given in Theorem 1.

It can also be proved that the comresponding mean square error of forecasting is
computed as

{ﬂl_!l-}[h] my [ LTI a® +r ] ' (ﬂl?]lrﬂ{ﬁt}}[{m--rﬁ]
.'J - i . ﬂ;r i “"'.rr ) [] [] N
{.ﬁf} (ﬂ? +ﬁ?}[2+] ;[ ; a? +ﬁ? +4 n‘ z X ':a.iu + ﬁ?}[ﬂﬁrl
(26)
and the p.d.f. of this forecast is
LT
folplx, 80.8)= D %, - B@?+r.f4n—r)~! piri(a — pfirnel . (27)
r=0

As follows from expressions (24), (27), the proposed predictor is a weighted sum of
the classical predictors for the beta-hierarchical model with shifted parameters. Also,
the expression for the weights 1 are based on the Bayes formula, and #, can be
treated as the posteriori probability that the distorted value x was originated from the
sum of the non-distorted binary observations r (in contrast, w'_ are the corresponding
a priori probabilities). Since for the weight matrix (#.,), there can be obtained the
asymptotic expansion similar to (5), it is prudent to derive an approximate expression
for the proposed predictor (24), which is valid for small values of &g, £,.

Robust prediction for small distortion levels. If values of £9,£, are small, then
the sums in expressions (24), (25) can be reduced to three terms by climinating the
weighting coefficients other then &, |, & ., &, for(2dandw| . w,,, W,

for (25). Then the robust predictor can be expressed as the classical Bayes predictor
multiplied by the correction factor

ﬂ.’u + X 1 + . - ;
i Yo " £ — Y1 " E1

. + o(£g, £1), (28)
al +8) +n; 1+&-g0—& -8

Pi(x) =

where

[Et'.g +JBD)J: a n, _ (ﬂ?"‘ﬁ?}x“‘
U a® + x Ll B_+n—-x
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{t:r“ +,|'3°}J: - ﬂr .-t; {.:r? +ﬂ?_}x - af'ﬂ;
0= & = . '
a! +x B _+m—x

anda)_ =af -1, B8 =p°-1, = a) + 1. Expression (28) allows essentially
Slmphf}'mg the complexity of the m-busl ﬁ::-mcaslmg algorithm and can be used in
practical applications, for which the computing time is crucial.

Computer simulation. To demonstrate the robust performance of the developed
forecasting technique, the following computer simulation was done. There was
considered the beta-binomial model, and it was assumed that the true values of the model
parameters were a® =0.5, B%=9.5, n=10. For this a®, B°, there were generated k = 1000
realizations of the beta random variable py, ps,..., px (the corresponding mean value
was p = 0.05). Then, for each cluster with the success probability p;, a random Bernoulli
sample of size n was obtained. Next, every sample was distorted using the expression
(2) for &g = &, € [0; 0.05] varying with the step 0.01. Using these data, the ML- and
MIL.S-estimates of the a, 8 parameters were computed. For each cluster, two types of the
forecast was done: (i) the classical prediction (1) based on the ML-estimates, and (ii) the
proposed prediction (24) based on the MLS-estimates. Finally, for every distortion level,
the 95%-confidence intervals of the mean square error of forecasting were computed for
the both predictors (assuming that the errors follow the normal distribution).

As follows from the experiment results (Figure 5), the developed prediction
technique based on the proposed MLS-estimation algorithm ensures essentially lower
mean square error of forecasting when compared to the classical estimation and
prediction methods.

L

0.065

0.055

Figure 5: Comparison of the classical and proposed predictors: gray tubes — experimental 95% confidence
intervals, solid lines— theoretical mean square errors of forecasting; r — mean square error, & - disiortion
level {Ey=g ).
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For example, for the distortion levels sy = £, = 0.05, the classical procedures lead
to the error r = 0.071 against rg = 0.047 for the non-distorted case, while the proposed
robust methods ensure the error r = 0.054 (note that Figure 5 shows r against £, while
the above expressions are given for ~#). Hence, for the average response probability
P = 0.05, the increment of the forecast error Ar = r— rp redoces from 0.026 to
0.007. It should be siressed that the increment Ar caused the misclassifications can
not be compensated completely (as follows from the Bayes forecasting theory), but
the obtained value r = 0.054 is the lowest for these model parameters and distortion
levels. These results confirm the robust performance of the developed estimation and
forecasting techniques.

6 Application example

The developed methods of robust estimation and prediction were used for forecasting
TV audience behaviour. This problem arises in mediaplanning (Sissors and Lincoln
1994), which focuses on optimizing of advertising schedules taking into account the
target consumer groups (defined by age, sex, income, etc.) and budget constraints. For
this application area, statistical forecasting of future audience behaviour using records
from the past is a key issue, since it defines efficiency of the advertising spending.

Grouped binary data in mediaplanning. In TV mediaplanning, the binary responses
arise as a result of exposing advertising commercials to a part of TV audience (the
representative sample of the target group) during predefined TV breaks, where 1 means
that a person saw the commercial and vice versa. These data are registered by special
electronic devices (people-meters) and are grouped in a natural way with respect to
every person and break type (defined by week day, day time, adjoining program genres,
elc. ).

The misclassifications that may contaminate these data are caused by improper use of
the people-meters, which automatically register a TV channel being viewed, but require
manual registration of household members watching the TV. It is obvious that there
exists a small probability of using a wrong registration button that leads to distortions of
the recorded observations. The statistical properties of the viewing data are traditionally
described by the beta-binomial model (Danaher 1992), while the misclassification effect
is usually ignored. -

In frames of the paper notation, the TV viewing data may be interpreted as follows:
By; is the i-th person response to j-th commercial break of the certain type, k is the
number of persons in a target group, and n; is the number of the breaks that the i-th
person was exposed to. It assumed that the target group and break type uniquely define
the covariates Z;, and each person’s viewing behaviour for this break type is described
by the success probability p; that foliows the beta distribution with the parameter o?, 5°.
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For the case studies below, there were examined two data sets for one of the German
TV channels for the year 2000. The first of them focuses on improving the model
adequacy, while the second one deals with increasing the forecasting accuracy.

Viewing data modelling. To demonstrate the advantages of the developed distorted
beta-binomial model (DBBM), which takes into account the misclassifications and
employs the proposed robust estimation techniques, there were considered the TV
viewing data for eleven commercial breaks (n = 11) corresponding to “World News”
showed on Saturday prime time. There were investigated six target groups with different
sex (M,W) and age (14-29, 30-49, 50+) with size k varying from 1025 to 2488.

The results of the model adequacy analysis are presented in Table 6, which shows
that the proposed DBBM and the relevant robust estimation algorithms significantly

Table 6: Adequacy analysis of the classical (BBM) and the proposed (DBBM) models

for describing the TV audience behaviour using Pearson’s x* goodness-of-fif statistics.
Target group M14-29 M3049 M50+ W 1420 W3049 W50+
Data characteristics
Group size, k 1137 2011 2281 1025 2084 2488
Sample mean 121077 49-107 36107 21-1007 38107 47102
Overdispersion 1.66 133 2.75 2.05 2.54 3.27
Classical beta-binomial model (MM-estimator)
p-value 0.41 0.96 0.01 0.82 0.10 0.05
¥ -statistics 9.30 3.14 21.7 516 14.6 17.1
Parameter a 0.17 0.16 0.17 0.18 0.21 0.16
Parameter # 13.9 314 4.56 8.33 5.27 325
Classical beta-binomial model (ML-estimator)
p-value 0.45 0.97 0.02 0.80 0.10 0.05
A -slatistics B.58 287 20.0 543 14.6 16.9
Parameter a 0.17 0.17 019 0.19 0.24 0.17
Parameter 8 13.5 6.55 5.08 E.8l 5.78 347
Diistorted beta-binomial model (MMS-estimator)
p-value 0.28 0.99 0.32 0.89 0.84 0.14
X -statistics 10.9 1.00 10.4 4.35 4.99 13.5
Parameter o 0.09 0.13 0.14 . D13 0.15 0.15
Parameter 8 9.57 5.58 3.8% 707 4.00 314
Distortion level g 0.003 0.002 0.003 0.003 0.006 0.001
Distortion level g, 0.060 0.000 0.042 0.000 0.060 0.004
Distorted beta-binomial model (MLS-estimator)
p-value 0.63 0.98 0.77 0.88 0.83 0.50
¥ -statistics 7.1 246 5.67 4.40 5.04 8.34
Parameter o 011 0.15 0.10 015 0.15 011
Parameter 8 9.12 6.39 3.14 1.51 4.31 236
Distortion level & |  0.001 0.002 0.007 0.002 0.006 0.005
Distortion level &, 0.048 0015 0.068 0.008 0.020 0111
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increase the modelling accuracy. For example, for the target group M 50+ (men of age
50 and older), the classical BBM yields the p-values 0.01 for the MM-estimator and
0.02 for the ML-estimator, while the proposed DBBM ensures values 0.32 and 0,77 for
the MMS and MLS estimators respectively. This confirms the apphcabmty of the paper
results to the modelling of the TV audience behaviour.

Forecasting of audience behaviour. To illustrate the accuracy of the developed
forecasting technique, there were considered N, = 31 commercial breaks of different
types exposed in December 2000 for the target group W 50+ in the frames of a single
adverting campaign. Based on the past data for the similar breaks (for three preceding
months, September - November, 2000), there were obtained the viewing behaviour
models based on the proposed DBBD distribution. Then, using the proposed prediction
method, for all persons and all breaks, there were generated the forecasts m;, (the
probability that the i-th person watched the break of type z). Similar forecasts were
also obtained for the classical model based on the BBD.

The accuracy for the obtained forecast was evaluated using the specific performance
measures adopted in mediaplanning, the Reach and GRP (Danaher 1992), The first of
them, Reach, describes the audience fraction (within the target group), which have seen
the advertising commercial at least once during the whole advertising campaign:

Reach = k™ Z[I = l_]{]- - ﬂ't:}]

m]

The second performance measure, GRP (Gross Rating Points), defines the sum
of the above fractions throughout the campaign (without considering the audience
duplication):

Ht
GRP = k™! i Zn,, .
i=1 r=]

Using these expressions, there were obtained the Reach—GRP curves via considering
smaller advertising campaigns composed of the considered breaks (with break number
from 1 to N;). In practice, such curves are the primary tool for media-planners who use
them for assessing the economical efficiency of adding extra break to the campaign,

Figure 6 compares the Reach—GRP curves for the BBM and DBBM-based forecasts
with the real data curve calculated using the December 2000 records. As follows
from the figure, the proposed forecasting technique ensures much more accurate
approximation of the Reach—GRP relation than the classical BBM method. In particular,
the maximum relative error of the Reach—GRP approximation using the BBM-based
forecast is about 21%, while the proposed DBBM-based technique ensures the relative
error less then 4.2%. This confirms the practical value of our results.
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Figure 6: Comparison of the Reach—GRFP curves based on the classical (BBM ) and the proposed (DBEBM )
maodels against the curve obtained from the real data.

7 Conclusion

The paper proposes new robust estimation and forecasting techniques for the grouped
binary data in the case of response misclassifications caused by stochastic additive
distortions. It is assumed that the data are described by the beta-binomial or the
beta-logistic model that belong to the class of the beta-mixed hierarchical ones. For
these models, it is examined the effect of ignoring the misclassifications and there are
obtained expressions for the biases of the method-of-moments and maximum likelihood
estimators, as well as expressions for the increase in the mean square error for the Bayes
predictor. These expressions allow assessing the sensitivity of the classical techniques
w.r.l. the distortion levels and decide on their applicability in practice.

To minimize the misclassification effects, there were developed new consistent
estimators and a new Bayes predictor, which take into account the distortion model.
There were considered two cases (of known and unknown distortion levels), for which
explicit expressions and numerical algorithms were proposed that allow constructing the
small-sensitive estimators of the model parameters and the small-sensitive forecasting
procedures. The robustness of the developed techniques was verified by computer
simulations, and the practical valve was confirmed by a real-life case study. The
proposed algorithms were implemented as a MATLAB toolbox.

Future work will deal with the minimax robust estimation and forecasting for the case
of known upper and lower bounds of the distortion levels, and also with the problem of
small sample performance for the developed methods.
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Mathematical Appendix

Basic notation. P{.) is the probability of a random event, E{.} is the mathematical
expectation of a random variable, V[.} is the variance of a random variable, y&~! =
yWy=1)...(y—z+1), ¥ = y(y+1)...(y+z—1),y € R,z € N are the incomplete factorials,
C! =("™) is the binomial coefficient. Definition of Op: for two random sequences Y, Z,,
Y, = Op(Z,) means that Ve > 0 F k., N that 0 < k, < +c0, 0 < N, < +co and for
ne> Ne, PlI¥a/Zn|l < ke} > 1 — €.

Proof of Theorem 1. Let r be a realization of the DBBD random variable. Denote by
{H.},r =0,1,...,n, apartition complete set of disjoint events, where H,., means that the
distorted value r was obtained via the distortions (2) from the original positive responses
count 5. Then using the total probability formula

Peo,e1) = » P(Hy) - Por=0,1,....n.
=0

To find the probability P{H,;), denote by zgp,z, the number of the distorted zeros and
ones in the original data. Then combinatorics yields to the following expression

Wri(&0,€1) = P(Hye) = D CREP(1 - £0)"*0&{ (1 —&1)'™, s—z+20="r

o

Denoting [ = s+zo=r+z) leadstol=2r, [< s+ r, 25, | <n, which is equivalent to
max(s, r) < ! < min(n, 5 + r), that proves the theorem. D

Remark. The standard approach for investigating the properties of the estimators that
are fitted to the misspecified model is based on the results of White (1982) that involve
Kullback-Leibler divergence. For Theorems 2, 3, 6, the authors employ a different
approach that allows using the specific DBBD properties to obtain clegant proofs.
However, one can check that using the Kullback-Leibler divergence leads to the exactly
the same results.

Proof of Theorem 2. The classical MM-estimator of the BBM parameters is expressed
as (Johnson er al. 1996):

n—-i-s/Hx . (n-x-s/Dn-5
MM = “(s2[X + &/n— Dn

(s R+ ®/n—1n"

(29)

MM

where % is the sample average and s is the sample variance. Let m(go, £:), d(&o, £1)
be the mean and variance of the DBBD with the parameters n,a%, B° e, 8 (see
Theorem 1). Since %, s° are unbiased and consistent estimators, and V{X} = d(&q, £1)/k,
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V{s2} = O(1/k) (Ivchenko and Medvedev 1984), then & = m(eg, &1) + Op(1/ Vk), 5* =
d(eq, £1) + Op(1/} '&}. Using these expressions together with the properties of Op(.) to
modify (29), we get

(n — m(eg, &1) = d(&g, £1)fm(eg, £1)) m(gg, £1)
(d(&g, £}/ migg, £1) + migg, £1)/n — Dn +0p(1/ V),

(n — m(&o, £1) — d(&o, £1)/ml&p, £1)) (n — miep, £1))
Op(1/ Yk
(dCeor €1)/mieo,e) + mieo,efn—Dn T OrO /YR
Employing the expressions for mi{&g, £,), d(&g, &) and the linear term of the Taylor

expansion with the Peano remainder for the above functions of &g, £, proves the theorem.
O

@ pmlE0. €1) =

Bum(€s, €1) =

Expressions for Theorem 3. In the theorem statement, the following notation is used:

Pg,: = FE{ﬂu*ﬁn}l FE{E'UPEI} = Z Pr{ﬂ'ﬂ.ﬂnyﬂu,ﬁl}, s=0,1,....n,
re=l

5 1 - PEO.0) T PHO.0) S
*‘Z @ + )2 ' S‘H_Z(.-Sﬂ+n-s—l}'*” Z_; a“+ﬁ'°+s]1
n-l n=1 {J+1} U.Hl a-1 H-E}Pﬁ,:
__Z f:r“+s P_;;’ a®+ 5 ﬁp_zﬁ“+n—s—l’
o s+ DPy
See Zﬂ“+ﬂ-s—l
H = (Hijlaxa, G =1{Gijlaxa, Hii = Sap — Sa,

Hy=Hz =848, Hn=Ses—Ss Gu=3Sap Gru=5,,=55=GCn, Gn=_Sg.

Proof of Theorem 3. The ML-estimator for the BBM is defined as a solution of the
following system of two equations (Johnson ef al. 1996)

= n—1
F, k
ﬂﬂ'+_ﬂ+r-ﬂ. §ﬂ+n—r—lh§a+ﬂ+rﬁﬂ' (0)

where F,= fo+fi+...+f., and {f;} are the empirical frequencies. The system has a single
solution that maximizes the likelihood function (Johnson er al. 1996). By definition, the
frequencies are the binomial random variables with the parameters k, P,(a,8°, &, &)).
Since for a discrete probability distribution, the relative frequencies f; = f;/k are
unbiased and consistent estimators of the corresponding theoretical probabilities, and

— k- F,

r=0
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Vifi} = Py(@® % &0, £1)(1 — Py(a®, B° €0, £1))/k, then f; = filk = Py(a®,B° £0,51) +
Op(1/ Vk), s =0,1,...,n. As a result, the system (30) can be expressed as

=1 ]_PE':EH-'EI] n—1 1 1 ~
; a+r _Za+ﬂ+r+ﬂ‘n(ﬁ)*“'

r=l
T Pieoe)) T 1
“d +n—r-1 ; '_Zu: a+B+r R (E) o

Let us linearize the obtained system by &£p.&, in the neighborhood of the point
(a®, A% 0,0), then

AYAG 1 (80, 81) + AJABpL(E0, £1) + AD 80 + A, £1 + 0(£0) + o(&1) + Op(1/ V) =0,

BYAG 1 (0, £1) + BJABuL(g0, £1) + B2 g0 + B, &1 + o(£0) + o(&1) + Op(1/ vk) =0,

where the coefficients are the corresponding derivatives. Expressing the Aaa(€o, £1),
AP (&0, £1) In terms of &g, £) from this system proves the theorem. O

Proof of Theorem 4. Using Theorem 1, one can show that the MM-estimator of the BEM
parameters a, 8 that takes into account the distortions model (2) is defined as a solution
of the following system of two equations

- r ﬁ &
1

=Hﬂ‘+_3+ﬂﬂ+ﬂrﬂ]_ﬂﬂ'_+ﬁ.sh (3']‘

al2*] + 12412 + al2*1e? — 2aBe; — al?te) - 2aBeoe

. . [Z-]'
m,=m; +n @+ B (32)
Using the substitution
@ b= a + 1 &_H[I—P] Jlg_I:l-w}{]-—s\!,‘l
llr'||::'+‘i'fi‘ Ca+pg+1  v=u’ B v—u

transforms the above system into
my =nm(u+(1—w)eg—uey), m;=mj+nn—1)vu(l—g5—g) -Hy:ﬁ +2ueg(l — g5 —£1)).

Solving this system with respect to u, v and changing the variables back to «, 8 proves
the theorem. =

Proof of Theorem 5. The empirical probabilities vector P(&g, £1) satisfies the following
asymptotic expression (see the proof of Theorem 3): P(gg,8) = PAeg, &) +0p(1] ﬁ),
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r =0,1,...,n. Using the result of Theorem 1, one gets P,.(gy,£,) = Wies, &) - P* +
Op(1/ Vk). Using the properties of Op(1/ Vk) and the notation (10) concludes the proof.
o

MMS-estimator of BBM parameters. The Jacobi matrix J; for the iterative procedure
(13) is calculated as J§ = H - G + 5, where

2
1 1
_ 313 _
Hi=n (n+ﬁ}ﬂ*1§(¢+i a+ﬂ+i)'

[3+] 2

xr -1

H =5 [H_I-—_ S —
2= {a+ﬁ]l3*lz(a+ﬁ+f)'

[4+] 1 1
Hoy = ni4-1_F -
n=n {a+ﬁ}l4*IZ(¢+i a+B+i

3
(=) __ =~ —_
Hz =n {mez

Gn=-(@+28+1), Gp=-ala+1)/B,
Gz =B +1)/a, Gn=-|[2¢°+ﬂ“+l),

2418 al3+]
S =gl B W N
RNy A o )
_ R’H“'Iﬁ ﬂ,[4+|ﬁ
S = 14n1* ]m‘hﬁﬁ"’ Sn=4n[*|mﬁ+ﬁ-5m.

MLS-estimator of BBM parameters. The partial derivatives of the log-likelihood
function i, 8, £y, £/) are computed as

l L P a,pB)/da
30 ;[ﬂgﬂ:wﬂim.m]- PAaB.eoen)’

' Prla,B, &0, €1)

% = i [ﬁ Z wfl.(&:ﬂl Sl) ap?{a‘ﬂ}fa.a ¥
o _ Z [ Z dwnileg, £1) _ Pl(@.p) ]
a F ®
8l

£

i=0 aﬂﬂ Pf{ﬂl'lﬂi El]i EI}

=z":[ ia“’ﬁfﬂﬂjﬂ'ri‘ Pl(e,B) ]
’ &EI Fr{ﬂrﬂigﬂia'l} '
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nd*r)
%E _ E E""C':',Z‘,{{J'-r =101 — g0 — (n = De (1 — £0)™ ']5‘ (1 - & YL,
F=max(lr)

min{ad4r)
P =N el - sy (- eI - )T (4 r = DL — ) 1).

U bemaxiis)

Expressions fnr Theorem 6. In the theorem statement, the fﬂllﬂwi.ng notation is used:
1 —om 1 Rl 1 -t
1] )
Hh_zﬂﬂﬂ“ﬁ“ Z[&"+; &“+ﬁ“+_;] Z[{&u+;}z (39 + 59 +J'F] ]

Ls=1..... m,

tu= 32000 S prone - wo ) s w
o= & 2B L\ a1 BB )) B, R )
Ls=m+1,...,2m,

Fig—1
Hgy = Hi, = L T l=1,....m, s=m+1,...,2m,
’ ; aiPgs ﬁ“jz_;(ﬁhﬁoﬂ}z
d fig—1 . d fg—1
R, — j j+1
_ 0 q _ 0 _
Gn—Zﬂq;&qzwﬁj, Gp = ;l:ﬂq;&,, 2 &g+jﬁ+" [=1,...,m,
d fig—1
j+1
Gp =- ﬂsﬁat h Gp=) 0 P,
qzﬂ“ o +ﬁq -1 7 ; o “'J_ﬂ ﬁg-l-ﬂq-—-_{ 1M

= iﬁg{ﬂﬂ'bl}}. Pﬁ{al]‘bﬂ} = Ci#ﬂ(&g + j'ﬁg_l_ﬁq_ j] &D = edm-ﬂ‘q' ﬁg - .W'ﬂ"
=0

Proof of Theorem 6. The log-likelihood function for the BLM is expressed as (Slaton et
al. 2000)

a—1 rig—x—1 fy—1
Ka,b)= [ln-: D+ D In@i@ + )+ D In@id) + j) - ) In(ai@) +Bi(b) + .r"}]-
i=1

j=0 Jj=0 J=0
(33)
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Under the theorem assumptions, the function l{a, b) can be rewritten as

d ¥=1 Ag-l-1 Ry=1
la,b) = i [In{C'i} + Z In@,@) + H+ Y. IniBe(b) + ) - 2., In(ég(a) + fob) + .
g=1 r=1 i=0 Jul) Juld

where k, is a number of clusters with factors vector ?y k = E:=]kq'* yi is the
observed number of successes for the cluster type f, X = Uzt 054, .. ¥} and
(@) = e %, B.(a) = & % Then, transforming the sum by ¢ using approach of Johnson
et al. (1996) for the BBM likelihood system derivation yields

d =1
Ka,b)=A+ Zk.,'i[u = F)-In(@g(a) + ) + F} - InB(b) + g = j = 1) - In(eryla) + Bo(b) + 1)),

g=1  j=0

where A is some constant, F{ = ¥/ f7 and f7 is a relative frequency of the

z=0
value z occurrence in a sample {y{,)4,..., yiL Let us use the following asymptotic
property of f (Ivchenko and Medvedev 1984): /¥ = P? + Op(1/ kg ), where P7 is
the corresponding theoretical probability. Then, using the properties of Op(.) and the
assumption that the factors (#, #,,...,9} are equiprobable, it can be proved that for
k — oo, the ML-estimator maximizes the following function

d fg=1
lia, &)= Ztﬂ 1 —ﬁj.} In{ég(a)+ j) + &7 I (b)+fig— j—1) = In(dg(a)+5,(b)+ _r;} + ﬂp(-;,—_ i

gul f=0

where 71 = ) o Pl@®, 1%, £0,81), and PU(a®, 1P, &, €,) are the elements of the
probability row for the DBBD with the parameters #,, &, B,, £, &, (see Theorem 1):

L+
ﬁf{ﬂﬂ*b“: 'ED%EI.] . i "":;[Ei:h Elj & H{ﬂn. bﬂ_}. W:.F = ; C;‘I.ﬂ;:{j 'Jil"l_ - En}i.'-—fsl‘l—:{] - BT}J!H_‘J
I=1 I=mmamiz, i}

Besides, it can be proved that the following asymptotic expansions for P hold

P =P{+((hg=2+ DPL, = Gig-0Ff) g0 +((z+ DFY,, - 2P} ey +oleo)+oler), 2=0,1,. o fige (34)

where Fi] = P‘;

.+1 = 0. Since the ML-estimator is a solution of the optimization
problem {,(a, &) — max, then the corresponding partial derivable are equal to zero:

! 5 (1-#ab,e, ) I I
& & ! : - 1,-0 {—):n,,,, 35
.;‘ ’ "w;u[ Fo(a) + j &qfahﬁqwm] Ym0\ R (%)
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g ( #a,b, &, 5) | 1
ﬂﬂé {H}ELE : - ]+ 1n-O (_) = 0w, (36)
§ T B @ R - -1 @B +i) "\
where 0, is a vector of zeros of size m. Linearizing this system w.r.t. Aa(eg, ),

Ab(gy, £1) and expressing the biases from the linearized system concludes the proof.
D

Expressions for Theorem 7. In the theorem statement, the following notation is used;

JAa  jAb
J =( J'Hn' J‘-ﬂ[’ )r {EE)T = [En'gb]i",

where

i=1

-1 xi=1 1 =1
Zm‘“’f[;}r Py ‘*"[;W'Zmﬁwm]]

_ k . == - -] -l 1
';Z"’Z‘ : Z Z +,&°+_; [ Z(ﬁ" JJE_;"("?"'JB?"'-"F]]‘

=0

k
Izll' » ti =I-. "EEEE] .
2 =g ﬂnﬂoﬂzu{ﬂn-l-ﬁb—l—]z - 2- m
k
_Il'(ﬁu+"i‘xi} n; — X;
= E;IIP ¢ + . ]
; 1 l[ (a? + x; - 1)? £o ﬁ?+n;—x,-—1£l ’

k
_ _ X (n; — -ti}(ﬂu + X;)
_;:z'ﬁ?[w?+x;—l i B rm—x— 17 ‘]

Proof of Theorem 7. Using the asympitotic expansion (34) and the properties of the BBD
(Johnson et al. 1996), the log-likelihood function I .(a, b, X, &9, £;) can be expressed in
the following asymptotic form

lela, b, X, g0, £81) = l(a, b, X) + e(a, b, X, 59, £1) + o(&p) + 0(&)),

where

E
_ Bib) +ni — x; - i N ai{a) + x;
ela, b, X, g0.81) = Z ((xa o@D + 5 —1 (n 14}] &y + ({n. x:)m{b} e | - r:)-su)‘

i=1
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and () is defined by (33). Let us note that, when ignoring the distortions, the ML.-
estimator a(X, eo, £,), b(X, £9,£,) is the solution of the optimization problem i(a, b)
— max. However, when taking the distortions into account, the ML-estimator
a’(X, g, & ), B(x, £¢, £1) is the solution of another problem: le{a,b) — max. Let us
denote

_{a) . _{aX,g0,81)) _ _ [ @%(X, g0, 1) o_[ad
.!'"_( )l ﬁxﬁgﬂ‘sl}"(ﬁfx,ﬂﬂiﬂlj)i yo(xlﬁﬂtsl}—(sg{xrsﬁislj): ¥y _(bﬂ )

It can be proved that, in the neighborhood of 3, 2(5°)+J(5°)- (5 7°)+ (5 —5°) = Oz,
On the other hand, %{j?“} = —2.(7°) + 1an(o(e0) + ole; )), where

ala, b, X) & = o i
— 7 - _— , 37
da ; =) [JZ;' aila) + j }Zu: ai(a) + Bi(a) + j 379
a, b, X) & wact g = 1
—t. gy Z T —— i 38
Then, using the above expressions and the asymptotic property of the ML-estimator
@ =a"+1,0p(/ VE), B° = b%+1,,-Op(1/ VE) completes the proof, =

MLS-estimation of BLM parameters. The partial derivatives of the log-function
la, b, X, 89, £)) are computed as

S & wo(80,61) - OP(a,b)/da, g & inﬂ;‘j{smﬂl}fﬂ-”}{mwﬁbr

al Z Z
%a; 4 0 LiloWai(€0,£1) - Pi(a,b) ' b, =1 58 Zreo Va0, €1) - Pi(a,b)

i=l j=0

o (e0,60)/B80 - Pi(ab) a1 _ i 3 8w, (€0, £1)/9e0 - Pifa, b)
ZioWaleo, &) Pila,b) " B8y &L EH W (eo,61) - Pl b) |

where

ﬂ.i {'ﬂ: '&] 1 1 - § ]: 1 ay +
4 = P‘ ir X E I' ala) -+ ﬂ
_r__ = _f{-ﬂ' b‘}z"- l( :I[ ﬂ"‘{ﬂ} == ! I‘f } '!{ } E] '

I=0 =0
APi(a, b) , meiol = ]
i _ ] -
ab, s b}z,,ﬂ;[a}[ qu Bia) + 1 ;Z=u: ai(a) + Bia) + !] '

and dw' /dey, dw' /3, are defined above (see the MLS-estimator for the BBM),
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Proof of Theorem 8. Under the distortions, the mean square error of forecasting for the
classical Bayes predictor can be expressed as

7 = El(p; — (@ + x)/(@? + 82 + n))?},

where p; is the beta random variable with the parameters a?,B?, and the variable
x (the distorted sum of binary responses) follows the DBBD with the parameters
ni,aj, B, o, €. Simplifying the latter expression leads to

olElp} + Elxpi} af’ +2a0E(x} + E(x*)
a? + 8% + n; (@] + B} + n;)?

7 =E{p}}-2 (39)

where E{p;} = a}/(a] + B8)), El(p}} = o%@® + D/((@? + 82)a? + ° + 1)), and the
mathematical expectations of the random variables x, xp;, 12 are

E{x} = ngp + n(1-g9—&1)-E{pi}, Elxpi} = neo-E{p;} + n(1—so—&1)-E(p?}, (40)

E(x*) = E{x} + n(n — 1) (&} + 280(1~60—&:)-Elpi} + (1—go—£1)-E(p?)). (41

Substituting these formulas to (39) and simplifying the correspondin E expression proves
the theorem. o

Proof of Theorem 9. Following the proof of Theorem 8, the mean square error of
forecasting for the classical Bayes predictor under the distortions (when using the
estimates &;, B;) can be expressed as

&Elpi} + Elxpi} &} + 2&E(x} + E{x?)

7 = E(p}) -
: =Elp;) -2 G+ B+ m; (&; + B + n;)?

(42)

where the mathematical expectations E{x}, E{xp;}, E{x?} are defined by expressions
(40), (41). Then, collecting the coefficients of o, £, and &2, go¢;, £7 in expression (42)
taking into account the notation (22), (23) proves the theorem. 1 -

Proof of Theorem 10. Using the Bayes formula and Theorem 1, the posterior p.d.f. of
the random variable p; is expressed as:

f:-u “"irif*'u-ﬂﬂ' v {:',',".l:’fl — x)mi-r), B{E?,ﬁ?}qxnf_j“ - x)"?"
o Zrowirso,£1) - Cpy (1 — )@~ . B@?, B)-1y5-1(1 — yy$-1dy

Jo(xls, €0, €1) =

Simplifying this formula using the properties of the beta distribution (Johnson et al.
1996) leads to the expression for the forecast p.d.f. (27). Then, calculating the mean
of this distribution taking into account the properties of the DBBD gives the predictor
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(24). The mean square error of forecasting (26) is derived using the technique given in
the proof of Theorem 8 for the obtained predictor. O
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