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Introduction

Let a discrete time series be observed which may be described by one of L finite
homogeneous Markov chains {2 < L < 0o). These Markov chains specify L classes
of the observed time series. The classes are assumed to differ in parameters of the
Markov chains, i.e., in matrices of one-step transition probabilities. We consider
the problem of classification of the observed time series into one of these classes.

This problem is very topical in applications in medical diagnostics, classification
of DNA sequences [1, 21|, technical diagnostics (e.g., faulty link detection in com-
munication networks [9]), sequential detection of an abrupt change in the Markov
chain distribution |16}, intrusion detection in computer networks [8], etc.) In prac-
tice, this classification problem is often accompanied by some prior uncertainty:
unknown parameters, missing values, ete. [6, 12].

The classification problem under consideration includes the construction of an
optimal in some sense decision rule (DR) for classification of the observed time
series into one of L classes, and also the evaluation of the DR performance. The
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performance of a DR is usually described by the misclassification probability, which
is also called the risk of classification [10, 15).

If the parameters of the classes are known, the Bayesian decision rule (BDR),
which minimizes the misclassification probability, can be easily constructed (see,
e.g., [9, 11]} using the traditional technique of discriminant analysis [10, 15]. But
the evaluation of the exact misclassification probability of the BDR is a serious
problem, which is why the asymptotic analysis of the misclassification probability
for the BDR is needed. There are two main approaches in asymptotic analysis of
the misclassification probability. According to the first approach, the parameters of
the classes are fixed and the rate of convergence of the misclassification probability
to zero is investigated using the large deviations technique as the length of the
observed time series goes to infinity [11, 17, 19]. According to the second approach,
the classes are assumed to be contiguous [5, 13] {or “close” [{4]) as the length of the
observed time series goes to infinity. Then the limiting value of the misclassification
probability is sought, which is not equal to zero because of contiguity of the classes.
The second approach is more general and seems to be more appropriate in practice
as the hardness of discrimination between classes is adapted to the size of exper-
imental data [4, 5, 13]. The contiguous classes approach has not been applied in
discriminant analysis of Markov chains before. The case of unknown parameters of
the classes as well as the case of missing values in diserimination of Markov chains
have not been investigated so far.

In the paper we construct the decision rules for classification of stationary finite
Markov chains for three levels of prior uncertainty: known parameters, unknown
parameters and missing values. For these three cases we construct and analyze as-
ymptotic expansions of the misclassification probability using the contiguous classes
approach.

1. Mathematical Model

Let a sequence of discrete random variables {X;}, X, € A = {1,2,...,N},
t=1,2,..., be observed; it belongs to one of L classes 0y, Qy,...,12 with prior
probabilities q1,qa,... ,qr € (0,1) (L > 2, g1 +...-+qr = 1). A sequence of class
is a homogeneous finite Markov chain specified by the vector of initial probabilities
7 and the matrix of one-step transition probabilities P(0);

A = (x®): 2 = Pe{X; =i |},

(1)
P{!J = [FH}:' : P‘E;} = Pr{]‘ﬂ =J' I x:,-_-l - i'| ﬂ!}p t:] S A!

where | € {1,...,L}. The Markov chains of classes {{};} are assumed to be sta-
tionary and ergodic; the vector m'*) is the stationary distribution for the Markov
chain of class £; with wf” >0, i € A. Excluding the singularities, we will assume
that all one-step transitions have nonzero probabilities:

(2) PP >0, ijed le{l,...L}
We suppose that the classes {{2;} differ in the matrices of one-step transition prob-
abilities { P},

Let a realization of length n from the class {1, be observed:

(3) X=(r1,22,...,Tn) €A, te{l,...,n}
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where v € {1,2,...,L} is an unobservable random classification indicator., The
probability distribution of the random variable v is determined by the prior prob-
abilities Pr{v =1} = q;, 1 € {1,...,L}.

We consider the problem of finding a decision rule d for classification of the
observed realization X into one of the classes {4}, d =d(X), X e A", d e
{1,2,... ,L}. The performance of a DR d(-) is described by the miselassification
probability:

(4) r=Pr{d(X) # v}.

2. Bayesian Decision Rule and its Performance

A decision rule dgpg(-) that minimizes the classification risk + = r{d(-)) (in our
case, the misclassification probability (4)) for known values of the parameters is
called the Bayesian decision rule (BDR) [10, 15]. We will construct the BDR for the
model (1), (3) and find the asymptotic value of the misclassification probability (4).

Define statistical estimators of the (L x L)-matrix of bivariate probabilities IT =
(M), ey = Pr{z; = i, 204, = j}, 4,7 € A, calculated from the realization (3):

n=1
o = = H AT ) . o
H=I:H|_,}'. I'I,-j=T;1, i = E I{I1=113:+I=J}r L,jE A,
) |

where T{A} is the indicator function of the event A. Because of the norming condi-
tion for the probabilities {I1;;} we consider only {Il;, (i, j) € An} as unknown pa-
rameters to be estimated, where .An = {A2\ {(N, N)}}; lyn = 1 ~ 2 tiirean i

Theorem 1. The BDR for classification of the Markov chains for the model
(1), (3) is:

1 1 =
() dppr(X) = arg max (E log g + ~log{) + 3~ 1;; m;;-ﬁ’), X €A™
- 1,7EA

Proof. Using the log-likelihood function of the parameters (7{), P} for the
realization X in the BDR for discrete distributions [10] we obtain (5). O

Corollary 1. In the case of two classes (L = 2) the BDR (5) is:

(6) dppr(X) =1(AMX))+1, XedA",
1, @ 1« N
(7)  A(X) =A"(X)+ ;!ngq—l +olog=hs,  AX)= N I, log =5,
Tz i,JEA i3

where A(X) is the discriminant function based on the log-likelihood functions of the
parameters of the classes 0, (4; 1(z) = I{x > 0} is the Heaviside function.

Now we explore the misclassification probability (4) for the case of two classes
(L = 2). Define the contiguous classes asymptotics [4] for the model (1):

(8) P =1 +bye), e—0, p =, ijeA,
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where {b;;} are some constant weight coefficients ( 3_ .. 4 pﬂjﬁl}- =0,i,j€.A),¢cis
the “contiguity” parameter.
We introduce the following auxiliary variables:

(2)

p
(8) ar = (-1)" Eﬂ.;[” Z pﬂ-}' log —H—} > 0,
i€ jEA Pijy
(10) st = 7PN Bibs0 — 7PP0) + PP A (Dl + n ),
o
":_EE . Z{P_Eﬂ{k} - FI-'H}} < 00,
k=0
5 u " "
(11) Ciw =~ Gpl ~ PP, bduved te(n2),
i

where a; is the weighted sum of the Kullback-Leibler information [2] for discrimina-

tion between P(") and P? (the multiplier (—~1)! ensures that a; > 0); {SE;L,‘,} and

{HE;L”} are some covariances, which will be explained in the proofs of Theorems 2

and 3; p;!,f(k] = ((PUNy* )ju is the probability of the k-step transition from the state

j to the state u of the Markov chain of class £2;; the series for c}ﬂ converges at an

exponential rate and can be easily computed; 4;; is the Kronecker delta.
The following lemma concerns the behavior of the auxiliary variables (9}-(11)
and the stationary distribution in the contiguous classes asymptotics (8).

Lemma 1. Under the assumption of contiguous classes (8) of stationary Markov
chains the following expansions hold:

(2) _ _(1} 23y . 2y _ (1) 2 1
Wy " =y (1 +Eh‘i +ﬂ{£ ]}' ﬂll!jt{u = Tijup T D{E}! SEjiu — SEJ:L,:

2
£
w=5 3 B 40, e,
iJEA

a
=21,

where |h;| < +o00, 1,j,u,v € A.

Proof. The first statement is based on the well-known result on error in solution
of a system of linear algebraic equations under matrix distortions [7]. The other
statements follow from the Taylor formula. O

Now we evaluate the misclassification probability (4) in the contiguous classes
asymptoties (8) with “contiguity” parameter € = O (n~'/2). Denote

(12)p= 3 §m"p), V= 3 (b —brun)slilylbu — ban) >0,
i,jEA (i,3){u,w}e.An
(13) Ar=A+ (m1y28@/Q) ko gy

v VvV

where the covariances {35;3“.-} are defined in (10)
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Theorem 2. For increasing number of observations and two contiguous

classes (B},

i
n — 00, E=—n—ru. ﬂ'lf.i:'f:m,

the misclassification probability (4) of the BDR (6) has the limit

. A A
?'ﬂ'*'?‘ﬂ=f}l‘:‘(— 2‘)4"!}2'1'("?1):

where © () is the standard normal distribution function, Ay, Ag are defined in (13).

Proof. According to (6) the conditional misclassification probabilities are:

1‘|=Pr{d{.?{]g£u|u=l]-=1—Pr{h{x}{ﬂ[u=l},
ro = Pr{d(X)#v|v=2}=Pr{A(X)<0|v=2}

Let us find the probability distribution of A(X) defined by (7).
Consider first the summand A®(X) of A(X). From (7} we see that A*(X) is
a linear combination of the random variables {II;;}. It is known [2] that if the

observation X belongs to the class §; then the statistics Eﬂ]' = /(i - I'I'E;-}} have

the asymptotically normal probability distribution with zero means and covariances
Env{qu:'.ﬁm} = S{;;Lu defined by (10}, where H{i;} = rrfnp';!j]. Therefore the condi-
tional distribution of A*(X) is also asymptotically normal. The asymptotic mean
of A*(X) obtains as a linear combination of the means of {I;;} and is equal to
(-1)!a;. The asymptotic variance of A®(X ) is a quadratic form of {sf!:-{m}, and

taking into account the norming condition for {IL;;} the asymptotic variance is

(2) (1) (2) (1)
2 _ Pij Pnn q . Puv PN (D)
o = E log =5 =05~ 108 5w > 0
) ¥ (2)
(igh(uwiedn  Pij PNN Puv PN N

Note that of > 0 because the covariance matrices {SE?“,H, i) (u,v) € An} are
nonsingular {2] and P £ P2 Under the contiguous classes asymptotics (8) of
can be presented as

(14) of=€* ) (by- b N )S\ s (Buv — b)) + O (£7) .
(6.5)(u,v)EAM

Consider the last summand of A(X) in (T} { = n-! lﬂg;{:q-f:]' f-'.rril‘]'}. Now we get

Fr{ﬁ{}f}{ﬂ1v=1}=Fr{ﬁ*{I]+:—llﬂg:2—] +(:{[}|v=!}

=Pr{ﬁﬁ'[-¥}_{—1}‘m+T{“ﬁ£%m_;]¢gﬂ|p= }

ay vnay q1
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We see from Lemma 1 and (14) that { = Op(e/n),

a 12 T jeabym'pl) + O (%)
ﬁd_li B ﬁ‘,f €22 i (bi; — ban st (buw — baw) + 't:-'h‘{as:-"]I
(i) (u,v)EAn VLT ijup v uy
log(g2/91) _ %m_
vno "u"’_\/-‘-“ 2ot uw)edn (Bid — bNH}ﬂi_,w{bw ~byn)+ 0O {.-1'3]
—1Ya; o (A log(gz/qa
_ ﬁ[ 53 P EL!T;;:?I] ~(-1ya gﬂ{i%q ).

and /n¢ /gy = Op(n~"?) = 0 in probability. Using the well-known result [18] (see
Theorem 15) on convergence in distribution for the sum of /n{ /o, which converges
to 0 in probability, and A*(X'), which has an asymptotically normal distribution,
we get

o =1-Fr{h[.3€]-:l}|y=l}_.1_.;.(%_ lng{-:rz.fm]) ( )

T3=PT{J'L[X}&'U|P=E}—&¢'(—E—M) q:-( : )

and rp = qiry + gere — 7. U

Corollary 2. If the classes are equiprobable (qy = g2 = %} then the limiting
value of the risk is fo = $(-A/2).

Remark 1. Taking into account the proof of Theorem 2, in the asymptotics (8)
the BDR (5) is equivalent to the decision rule

_ 1 0 -
d(X) = arglr‘]:'l&xb( Iugqt+i£lf[ lugp:j) XeA"

3. The Case of Unknown Parameters
3.1. Pruc-1v DR aND 1T$ RISK. If the parameters of the classes (1) are
unknown then a classified “training sample” is assumed to be observed:

(15) X={Xx"V x@  xy,

x{“Z{IEI].I?}.-ujIEEL J:E” EA: I‘-'E{L---.“I}-
where X is a realization of length n; of the Markov chain from the class ,
l€{l,...,L}. It is assumed that X and X, ... X&) are jointly independent.

The ML-estimators of the unknown matrices of one-step transition probabilities
PUY) can be calculated from the “training sample™:

{IJ'

PO=My: 9= u:-‘ i,jeA, le{l,...,L},
rg—1 " i
“E} = Z I{Em =1 1521 =7Jh Z -

tm] jeA
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Because of the norming condition for the probabilities {p ;]'} we consider only
{p; _,} (i,7) € Ap} as unknown parameters to be estimated, where Ap = {(i,7) :

i€ Aje A\ (N} PR =1- ;5 B
The plug-in Bayesian decision rule {PEI}R} is obtained from the BDR (5) if the
unknown parameters { P!} are replaced by their ML-estimators { PO}

1 I +(1)
dpepr(X,X) = argl?:ﬂ&( Ingm+—lngrr”+ijzﬂﬂs, log p;;

where '.Fr:-:‘:I = n" fn. In case of two classes the PBDR can be represented as

(16) dpapr(X,X) =1 (E{x,x)) +1,
- - 1 =(2) =£2}
ROX) = R0 + log 2+ Llog Ty, R0(X,X) = 3 g log i
" n Tz i, jiEAd i3

Theorem 3. For increasing number of observations n, ny, ng and two contigu-
ous classes (8):

(17) m,my — oo, nlfn=1;}[ll, (=12 e=en"V2 50, 0<e<oo,

the misclassification probability (4) of the PBDR (16) has the limit:

r—7 =f.'|‘1’(— é) +-:;2'I'( - E—;),
}12195{'?21"‘11}

Ap = —m
| O i -
1.,?'1;'+11 eV + W

{l} UI}{b . biH]{huu e buﬂ}ailj - D,

ijunw

(18)

s 1
Vi= —
A3 (4,9 (u0)EAp

where u, V are defined in (12), the covariances {auw} are defined in (11).

Proof. Consider the event Z = {n{} # 0, € {1,2},i,j € A}. The PBDR
is defined only if the event Z occurs. Put dpppr(X,X) = 0 if the complement
Z of the event Z occurs. Consider the conditional misclassification probabilities

= Pr{dpppr(X,X) #v|v =1}, € {1,2}
r;=Pr{{dpgpgfx,x.}95v}l"'l.g|v=£}+Pr{{dpgﬂﬂ[.x,K}?EF}HE'|H=[}.

Since the Markov chains are stationary (with 11*“ = 0, i+ € A) and recurrent,
taking into account assumption (2), in the as:,rmptntma of increasing number of
observations we get Pr{Z} — 0 and Pr{{dpppr(X,X) #v}NZ v =1} —=0.

Consider now the summand Pr{{dpppr(X,X) # v} N Z | v = I} and find the
probability distribution of the statistic A(X, X).
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Consider first the summand A*(X,X) of A(X,X). Suppose the realization X
belongs to the class §2;. It is seen from (16) that A*(X,X) is a function of the
estimators of one-step transition prﬂbabiliﬂ[‘,ﬁ and the estimators of the bivari-
ate probabilities: A*(X,X) = f(P1), P2} I). It is known [2] that the statistics
Eg-]' = fﬁ[f’ﬁ} - PE}} = w.f‘.hgn{;‘iﬂ]' — pﬂ-}) are asymptotically normal with zero

means and covariances Cov{ E;},EE.":} = a‘ﬂ-{ﬂ defined by (11), and the statistics

.»;-'Ej} = /7 (I — l'If-j"' ) are asymptotically normal with zero means and covariances
Cﬂ‘-’{EgJ: ey = EE;‘LH defined by (10), 1'1:.*;} = -:rEI:"pE;], i, j,u,v € A. Furthermore,
independence of X, X, X implies independence of the statistics {EE}}. {EH}},
{-Ei'ff]'} By the Anderson theorem [20] on functional transformations of asymptoti-

cally normal random variables, it follows that E‘{I , %) has asymptotically normal

distribution N

AT (X X) = (=1)'ay
ay

c{,ﬁ |u=s}—~N[u,1]

with the mean of the form f(E {P(1)},E {P®)},E {I1}), which is equal to (—=1)}'a,
(see {9)), and the variance &7 being the following quadratic form of the covariance
matrices (u’ﬂlv;’im (s ) and a vector of partial derivatives of f [20]:

ijuer
s oL o Thinw 8f 8f G

a5 9p&) Xa

~g
=

uw

T 5a 3
Gan(umrear OB OPur M (5 (Whear
af o
v gt e
(i.5) (umyean OHis Olluy

0 { n_(t {1
_ E (“’:‘ }FEJ-} _ “'::HPEH) ('-'TE:”PL{': B TTE:IP}_&_) ﬁ":;iu
1

{1 ( 3
{i.4)(uv)EAp Al

1 m
Pij Pin Puyv Pun

y 2
S (r!f}pEjJ ~ ,Tl;upm) (erf]'pEf.;I a0\ o2,
2 2) @ @) N
{i.ihuv)EAp Pfj} Pin Puv Pun -'"'."2
(2) (1) (2) (1)
P 2
+ > log _;%p_w log Zit PN S

(2} (1) _(2)
(i3, (u,w)edn Pij PN Puv Paw

We have 6§ > 0 because V f( P, P(2) T1) # 0 and the covariance matrices {aE;L,J,

(i, 5), (u,v) € An}, {e',, (i,5), (u,v} € Ap} are nonsingular, I € {1,2}.
Under the contiguous classes asymptotics (8) &7 can be represented as

2
. £
(19) E=o— > aPaP(bi; — bin)(buv — bun)ofih,

= inuw)eAp

+ &2 Z (Bij — barw I byw — wa}*E;L” + O {EE} .

(i.3){u.v)cAn
Using Lemma 1, (17), and (19} we get
ay ep loggz/ay _ log(gz/q1)

R 2VA Vet -::;;V+FE



Discriminant Analysis of Markov Chains 243

Consider the summand ¢ = n™! ]ng{i'ﬁ" I.u"fr,':tll } of A(X,X). The estimators of the
stationary distributions are consistent (frf” — rr,'-m ~ 0 in probability, i € A) and
¢ is analyzed in the same way as in the proof of Theorem 2. The rest of the proof
follows the lines of the proof of Theorem 2. 0

Remark 2. If ny, na increase faster than n, so that A;, Az — oo, then Vi, 1:"2 —+
and the limiting value of the PBDR risk converges to the limiting value of the
Bayesian risk: ¥ — .

3.9, ASYMPTOTIC EXPANSION OF THE RISK OF PBDR. Now we shall
investigate convergence of the PBDR risk to the BDR risk as my,na — o0 for a
fixed n in case of two classes (L = 2). Consider the difficult discrimination case,
where the classes are equiprobable (g, = gz = 3).

Let us introduce some notation: AX) = g2L2(X) — 1 L1 (X) is the discriminant
function based on the likelihood functions of the classes; Li(X) is the likelihood
function of the parameters of the class (0 for the realization X:

L(x) == IT @,
i,jEA

where n;;(X') is the bivariate frequency calculated from the realization X, 1,7 € A
Taking into account the expressions for the conditional misclassification probabili-
ties:

r = Pr{dppr(X)=2|v=1}= 3 Li(X)1(A(X)),

XeAn
e =1—Pr{dppr(X)=2|r=2}=1- D L(X)1(MX)),
XeAn
we get the exact value of the BDR risk in the form:
(20) ro=qrter=a- > MX)IAX)=a- A(X).
XeAn XeA™ AX)20

Averaging the risk rpppr(X) of the PBDR dpppr(- %) over the “training sam-
ple” (15) we obtain the exact value of the {unconditional) risk of the PBDR:

(21) r=g— », AX)E {1(A(X, X))}
MeA™

One can see that the discriminant functions A(X,X) and A(X) depend on the
one-step transition probabilities and the stationary distributions. Let us represent
the discriminant functions as functions of the bivariate probabilities only, which are
determined by the one-step transition probabilities and the stationary distributions:

~ ng(X) L7 ni(X) -8 fit?

A(X,X) = Z -—"*iLllngrd—l,. (ri- E'n fh}lﬂﬁ n!{.n.
HJEA ;" ea I1;,

Rg(X) T o ((X) — Gia) | T

AX)= ) ——= log —iy = > - log —==,
hjeA ;7 vea I1;. )

= o =0 (1) “{';’1 it (il (0. (0
1'1[1= (HU) I-_[“ =-I|'—=I I[{I]-;(II,‘J): n] =Ty pEJi iquA

LT
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! [ (i
where i }:jEAnﬁf, ne = 3. 0P, e {1,2).
Intmduc:e the notation:

Bn(X)= ”‘"{X:'bsﬁz —=Lhy,

i jed .|

Ay +
DuX) =352 3 gPXeX)sE,
122 ) (e EAn

gD(X) = > (ﬂu{-’f} B nnw{«’f}) 1 (n.--(x] _ nn-{-’f]) :

nd n@, ) A\nd ond
AD =[x e A gO(X) =0}, OX) = (sP(X)), (id) € An,

where {h;} are as in Lemma 1, Ay, A2 > 0; the function gu]'(.?f ) is the partial
derivative of A(X,X) with respect to l'I'[”I at [ = 1M, [T = 0@, 1 e {1,2}.
Theorem 4. Assume that the classes are equiprobable (g1 = g2 = 1), n. =

min{n;,nz}, n is fired. Under the contiguous classes asymptotics (8) and increasing
lengths of realizations from the “training sample™

1/2

(22) n, — o0, nfn.=Mz\>0, le 1,2}, g=en, """ =0, 0<e<oog

the following expansion for the inerement of the "BDR risk holds:

(23) r=rg+ .,,.-’fl_.-lrﬂ(g"i:_*)’

=2 Y LXOBUX)R(HAXI) >0, AKX) = 22X

XeAn Al ' vﬂn{x].

Proof. The discriminant function A(X,X) is a function of the statistics T1(1),
1 A = g(f11M, 11(?). The statistics {7 (ﬁE_? - HE;]'}} are asymptotically nor-
mally distributed (see the proof of Theorem 3). By the Anderson theorem [20] on
functional transformations of nfymptutinally normal random wvariables, it follows
that the discriminant function A{X, X) has the asymptotically normal distribution

AX,X) — A(X)
1:{-.,#?. = }_.m;n,:},

where the mean obtains as g(E {TI{"},E {[1®®}) and is equal to A(X) and the
variance o2(X) is given by the following quadratic form of the covariance matrices
(s{2u/M) and the vector of partial derivatives g¥(X) [20):

(1) gte)
-t uy yuw
AX)= ¥ R0+ T P (xeR0T

{ilj} !{ u,w ]"E-An l::i ij}'- I:u.t!] E-‘l-l'[
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Under the contiguous classes asymptotics (8) we get ]-[LEJ Hm{ 1 + e(by; +
hi)) + O (€?). Construct the Taylor expansion of A(X) and cr”[.li‘ ).
Consider first the case X € A"\ AN VAP, e, ng(X) # ny.(X)pl, M 1e{1,2).
Then the Taylor expansion of A(X) and 02(X) for any fixed X gives
MX)=eB(X)+0(e*), d*(X)=Du(X)+0(e),

where B,(X) = O(1), .,[Jr.'} O (1). We have D,(X) > 0 because g"{(X) £ 0,
and the covariance matrix {aij“, (#,7), (u,v) € An} is nonsingular.
Consider now the case X € A ie, ni;(X) = n. [X]Ipfj]' Taking into account

the norming condition ZJE A pmb._, = 0, the Taylor expansion of A(X) and #2(X)
gives

— "jl'i'l i )
AX)=e) =Lhi + 0 (%),
€A

e 5 e )

(.30 (uv)EAn \ T

w (X (X) S
y (n (1}]!’“" “”_“.j_awﬂ) Jt— +0 ().

We have o%(X) > 0 because the covariance matrix {sfﬂm (i,3), (u,v) € An) is
nonsingular.

The case X € A®) can be considered in the same way.

So, under the asymptotics (8), (22) we get

A(X) A(X), if X €A™\ Ay 43
Ty ﬁ* }: .
"'m_d{.‘-‘lf'] = A%X) {sign{h{Ij}-m. if X e.Att)y 42,

Then under the conditions of the theorem the expectation in {21) satisfies the
asymptotics:

E {1 (K{x,x}}} =1-pr{A(X,X) < u}

o1 - pef mMXX) - AX) _ C.9] IR
_1—P{u‘ﬁ o () r{x}} 1 - (-A*(X)).

Combining this with (21) and taking into account that n is fixed and @ (A*(X)) =
1 —®(=A*(X)), we have:

,zé_ 37 AX)®(AT(X)) +o(1)
NEA™
=%- > A+ Y Ax) - 3 AX)@ (AT (X) +0(1)
XeA", XeA", XEAn
A(X)>0 A(X)>0
=ro+ D AMX)(1-®A(X)- 3 AX)P(A(X))+0(1).
XeA™, XE€A",

A(X)z0 A{X)<D
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Since sigm'ﬁ{}f]} = sign{A{ X)) = sign(A*(X)) for any X € A", we get:

Y AX)(1-e(AT(X))
XeA™ A(X)20
= ¥ Ae-lan+ Y AR (=1atx)D),

XA AR XAy,
ALX)Z0 A(X)=0

T AR (A(X)

XeA™, A{X)<D

= Y AR - Y AX)R(-IaTX)),

XgAMILAD, XeAuat?
A(X)<0 Al(X)<0

and & (=1A*(X)]) = 0 for any X € AU A2, So, we obtain:

(24) rero+ 3. [AX)@(~IAX)]) +o(1).
XgANILAD

Now we consider |A(X)| = }|La2(X) — Li(X)|. Using the Taylor expansion
A(X) = €Bn(X) + O (£?) for X ¢ AU AP we obtain:

Roor= 22200y oo ) = 203 0B, () + 0]

Putting this expansion into (24), omitting the terms of order O (%), and substi-
tuting € = ¢/\/m, we obtain (23). O

4. Discriminant Analysis of Markov Chains with Missing Values

Let there be missing values in the realization X = (zy,...,2Zn) of the Markov
chain under classification. We use the vector M of missing value indicators in order
to indicate the location of missing values in the realization X:

(25) M = (my,ma,...,my), m€{0,1}, te{l,...,n},

that is assumed to be known and fixed. Here m, = 0 means that the observation
; is missing, 7, = 1 means that the value z, is registered (m; = my, = 1). The
vector M determines the model of data registration, in some sense it determines
the experimental design. There are two approaches to describe the missing-data
mechanisms [14): the probabilistic model of M assuming that m;,mz,... i5 a
random sequence (e.g., Bernoulli trials, a Markov chain) and the deterministic
model assuming that M is a nonrandom parameter of the data registration process.
In this paper we follow the second approach.

4.1. THE LIKELIHOOD FUNCTION FOR A MARKOV CHAIN WITH MISSING
VALUES. Let T be the number of fragments without missing values in the realization
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X, s0 T'is equal to the number of series of ones in the vector M (T > 2). Let us
represent (X, M) in the following form:

X = {I],... ..T":l = {X{]IE.-T_“}EXH:, - "ew T"T_”x['r]},
Xy = (I{:}.ITIU},:---- rﬂ-';:]hu;)-f t e {1,...,5:"'}1

where Xy is the tth observed fragment of length M; of the realization X that
corresponds to the tth series of ones in M: Tm is the sth missing fragment of
length M, of the realization X that corresponds to the tth series of zeroes in M.

Theorem 5. The likelihood function of the Markov chain parameters (w, P) for
the realization with missing values (X, M) is:

T T=1

(26) L{m, P X,M)= LLE e (H Ly(P, x{l]}) ( H F:..,_M'- .r..,.u.,L{H; + 1})!
fm] =1

where py;(k) = (P*);; is the probability of the k-step transition from the state i to

the stale j; Ly(P, X(,) is the probability of the fragment Xis) given the fired first

slate x, ¢

M} -]
(27) Ly = Ly(P; Xis)) = H Py e®iay, s

=1

Proof. One can see that the observed fragments of the realization (X, M) form a
non-homogeneous Markov chain with transition probabilities depending on M [6]:
the probability of the transition from z, to z,,, with m, = My = 1 is equal
to the probability of one-step transition p., ., +13 the probability of the transition
from x4 to x4, with my = meyi = 1 and k — 1 consecutlve missing observations in
between (my . =... = my4 k-1 = 0} is equal to the probability of k-—ET.E]} transition
Pzy.zes (k) calculated from the Kolmogorov-Chapman equation. [

One can see from (26) that the likelihood function is a complicated nonlinear
function of the transition probabilities {p;;}. Let us construct an approximation of
the likelihood function (26).

Let M = miny<;cr—) M, be the minimal length of the series of missing values
in the realization X.

Theorem 6. [f the stationary Markouv chain with paramelers (w, P) is observed
with missing values (25), and there exists a positive integer My such that

M’ = Mg, p=1- ﬂ‘é‘h?ij(”ﬂ} <1,

then the following multiplicative approzimation of the likelihood SJunction (26) by
likelihood functions for fragments without missing values {L{m, P; X(y)} is valid:

T
(28) L(r, P; X, M) = [| L(x, P; X)) + &(m, P; X, M),
i=1
E{H',P;X.M} _ M
L{x, P; X, M) —D(T“' “)'
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where L{'ﬂ', .P; .Ji.'[,}’_i = ﬂi‘::j.i Lt[P;X{ﬂ], Lg'l:..] 1% dﬁﬁﬂﬂd in {ET}

Proof. Consider the case of one missing fragment (X = (X : Xy X))
T = 2) and evaluate the approximation accuracy &(w, P; X, M):

]"H“aplle]l = ’L[‘I,F: x1 ﬂf} = L{W:F;I[I]}LIWTF;NE‘H}]
“an.lLlLip:m.u;.xmim: + 1) = L7, P; -’f{l}lL{ﬂ-P:x{zﬂI
W-tm.LLl Ly [P-‘u:-.u; J{:p.L{H: + 1} = Wxymya F I-‘ma] = Mzaa Ll“’q::,tl'?|

= Tz LII@IP#H:.M; ~=:?}.1{H- +1)- “Im.ll'

—
—

Using the inequality [Pz, e s (V2 + 1) = Ty, | S cpl0F=H/MOIY (see [3)),
we get:
dm, P; X, M)

& (B2 +1)/Mo)=1
Lz, P; X, M)

= v P
P':i:l},l-l.: -itj}ﬂm-— + I.J

The case T > 2 is considered in a similar way. 0
Remark 3. By (2) one can take Mg = 1 and p = 1 — min; je 4 pij, p € (0,1).

We will use the asymptotics of increasing lengths of series of missing values:
M~ — co. In practice, this asymptotics corresponds to “switches” of the observer
for long time periods between registration of the realization X and registration
of other realizations. Note that under the probabilistic approach to missing-data
mechanism [14], the vector M can be generated as a realization of a binary Markov
chain with “attraction”: Pr{m., =1|m, = 1} and Pr{m, =0 | my = 0} are
close to 1.

Corollary 3. Under the assumptions of Theorem 6 and asymplotics of increas-
ing number of series and increasing lengths of series of missing values,

(29) T, M —o00, Tp¥- =0,
the following almost sure convergence holds:

8=, P, X, M) .

L{x, P; X, M) 0.

Thus under the conditions of Corollary 3 the fragments without missing values
of the realization X may be interpreted as a set of independent “subrealizations”
described by the same model of the Markov chain but without missing values.

Let us assume that the asymptotics (29) holds and so the approximation er-
ror in (28) may be neglected. Therefore we shall use the following multiplicative
approximation:

T
(30) L(x, P, X, M) = [ [ L(=, P; X ().

=1
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This enables us to use the results of Sections 2 and 3 of this paper in case of missing
values.

4.2. A DECISION RULE IN CASE OF KNOWN PARAMETERS OF THE CLASSES.
The approximation (30) under the assumption (29) enables us to generalize the
results of Section 2 for the case of missing values in the realization X under classi-
fication.

Let M* = :‘;, M{ be the total number of registered observations in the real-
ization with missing values (X, M).

Theorem 7. Under the asymplotics
Hi

(31) M T M. =0, Tp ~ =0, le{l,...,L}

the BDR using the approrimated likelihood functions for the model (1), (3), (25) is:

1 1 =
(32) d(X) = arg max (Flﬂgq; + T ZH.Iugﬂin + z IL;; lﬂEFE;])a

1sist €A ijeA
. Thii n-1 T
H,u - L—{%] ﬂl_f = zm!mt+1 # I{I‘ ='i'It+| =j'},r |.-l'" — EI{IE"}-II- = i]-'

tom] =1

where i, € A, o = 1 — min,; jeq pﬁ-}‘

Proof. The proof follows the lines of the proof of Theorem 1 using the approxi-
mate likelihood function (30). O
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Let us now find the misclassification probability (4) of the BDR (32) in the case
of two classes (L = 2).

Theorem 8. For L = 2 under the asymptotics (31) and the contiguous classes
asymplotics (8),

c

£= _—-ﬂ. Te — 0, 0<e<oo,

the misclassification probability (4) of the BDR (32) has the limit:

. A A
rﬂ"'rl:l:'?l':'(_T‘)'l‘ ‘i“( ;).

where Ay, Ag are defined in (13).

Proof. One can see that under the conditions of the theorem the approxima-
tion (30) of the likelihood function for the realization (X, M) is valid. Therefore

the statistical estimators {ﬁ;j} from “incomplete” data have the same asymptotic
properties as statistical estimators from “full” data. The proof follows the lines of
the proof of Theorem 2. O

4.3. A DECISION RULE IN CASE OF UNKNOWN PARAMETERS OF THE
cLasses. Consider the case where the parameters of the classes (1) are unknown
and the “training sample” X is observed also with missing values:

X = {(X®, M), (X2, MD), ..., (X9, M},

where for each Ith realization X¥ of length n;, from the class {l; there is the
corresponding vector of miss-indicators M) = {m‘.”,m: o= ,m,—,,l} mmI e {0,1},
te(l,...,m}, le{l,....L}.

Let T} be the number of fragments without missing values in the realization

X® (T, > 2). Let X{{) be the tth observed fragment of the realization X that
corresponds to the {th series of ones in M (- et M{‘n ¢ denote the length of I[{H;
let T{,} be the sth missing fragment of the realization X that corresponds to the
sth series of zeroes in MU); let M, denote the length of Tﬁ,}. te{1,....,71},
s€{l,....,Ti -1}, L € {1,...,L}. Let My, = i1, M, be the aumber of

registered observations in the realization X; let Mm__ = mincicri—1 My,
denote the minimal length of the fragment of missing values in the realization X,

te{l,...,L}.
The asymptotics
—_— H':,:_
(33) T, - o0, My.—o, Tipp """ =0, le{l,...,L}

enables us to use the approximation (30) of the likelihood functions for all realiza-
tions from X.
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As in Section 3 we shall use the plug-in DR that is obtained from the BDR (32)
if the unknown parameters { P!} are replaced by their estimators { P}

S = (1)
(34) d(X,X) = arg IIEEB'-:FL (M‘ log i + M EEA”: log #;"" + ,JEEAHH IGEPJJ )

n=1I

= M . .
I; = ﬁf i = Em:mﬂl <Mz = 1,341 = j},
=1
(1) niy 0 _ { m {£)__{1) (0 ()
Piy = F i - Zm: Mygy - Iz =tz = dh

H] '
n;. i=]1

where the bivariate frequencies {n )} are caleulated from the observed fragments

of the realization X, i, je 4,1l e {1“.+.L}
Let us find now the misclassification probability (4) of the DR (34) in the case
of two classes (L = 2).

Theorem 9. For L = 2 under the asymptotics (31), (33), and the configuous
classes asymptotics (8),

L

3 HMt
the misclassification probability (4) of the DR (34) has the limit:

_ A A
rene(-E)con(- ),

where Ay, Aq are defined in (18).

Proof. One can see that under the conditions of the theorem the approximation
(30) of the likelihood functions for the realizations (X, M), (X, MUY is valid.

Therefore the statistical estimators {!'I;_,} and {p“}} from “incomplete™ data have
the same asymptotic properties as statistical estimators from “full” data. The proof
follows the lines of the proof of Theorem 3. [J

5. Conclusion

In this paper the classification statistical problem for stationary finite Markov
chains is considered for different levels of prior information: the Bayesian decision
rule and the plug-in Bayesian decision rule are constructed and their performance
is evaluated in the case of two contiguous classes and increasing number of obser-
vations.

The obtained results are generalized in the case of missing values in realizations
to be classified and in “training samples”.

Mjy— o0, Mj/M*=X>0, e= —0, Te—0, 0<c<oo,
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