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Introduction. Carbon nanotubes are the real objects which help to limit the 

choice of representative volume. As regard nanotubes, the unit volume corresponds 

to the nanotube itself and the ideal continuum, which is presented as a set of inter-
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acting carbon rings, prevents from evident entrance of defects. Deviation from ide-

ality (chirality of nanotubes) is one of the basic characteristics of the material. One 

may get an impression that a nanotube in itself is one single macroscopic defect. In 

this connection, definition of metric properties of a nanotube’s ―initial‖ state, name-

ly ―nanoshells‖ makes undoubtful interest. 

Formalism description. Let us consider a possibility to describe carbon nano-

tubes by using the differential geometry of the spaces formalism. It is known that 

chirality indices of nanotubes 1 2,i i  define the vector: 1 1 2 2i i C T T , where 1 2,T T  

are vectors of elementary translations. These indices define two screw translations 

with angles and steps: 

2
2 , , 1,2,i

i i i iz i


      
T C

T e
C

2 

where ie  is the unit vector, directed along the band generator. 

However, according the Halphen theorem, the composite of two screw transla-

tions is the screw translation, the parameters of which , ,z   can be defined in an 

elementary way [1]. Let the   be an elementary vector, parallel to the side of the 

carbon ring in the initial state. 

According to the traditional procedure of encirclement in the space of imper-

fect (non-ideal) crystals (which is geometrically equivalent to the space of absolute 

parallelism [2]), the nullity vector of the end and start of a looped curve is equal to: 

  
[ ]

2 1
2 ,k k ku d x d x S f  


     (1) 

where f   is the bivector of the 2-D area related to the infinitesimal loop and 
kS  

is the torsion tensor,  
k


 is the connectivity coefficients [3]. The vector rotation 

angle at encirclement is defined by the expression: 

 2 1 1 2
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where 
kR is the first curvature tensor [4] 
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In (3)  ,i
jkF x y  and  ,i

jkC x y  are coefficients of this connectivity [4]. Tak-

ing into account (2), (1) the deformation, connected with stretching and turn of the 

continuum (carbon monolayer), are presented as:  

 
 1

2
2

R C df    
      , (4) 

where 
kR  is the curvature tensor, 

kC  is the torsion tensor, df   is the bivector 

of the 2-D area related to the infinitesimal loop. 
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The torsion tensor can be easily related with the rotation vector, and the elastic 

deformation of the continuum is the deviation measure of the internal metric away 

from the external one. In this case, the compatibility conditions of Saint-Venant 

pass over into the condition of equality to zero of the Riemann  Christoffel tensor 

components. Outgoing from the elastic energy, we can define all the mechanical 

properties of nanotubes. 

Coiled carbon nanotubes. Coiled carbon nanotubes are a subject of addition-

al interest. A nanotube coiling is possible by two principally different methods: 

firstly, by coiling of a tube onto imaginary (virtual) cylinder having some definite 

radius R. In this case, the deformation is defined according to (4).  

Secondly, by twisting a rectilinear tube around its own axis until appearance 

of instability, and deformation of the rectilinear generatix of the cylindrical shell 

into a spiral structure. In this case, the general deformation of the tube continuum 

with account of the expression of relative curvature [3] will be defined as: 

~
... ... ...1

2 .
2

R K S df      
  

 
       

 
 

 

Since in the second case the total deformation is much higher, the elasticity 

modulus of coiled nanotubes of the second type should have a compression-

stretching asymmetry, and by stretching it should essentially exceed the elasticity 

modulus of coiled nanotubes of the first type. 

Waves in nanotubes. According to general methodology all kinds of the 

waves in continua with microstructure can be obtained as solution of the variational 

problem for density of the Lagrange function [5]. It means that equation for the ge-

odesic line give us equation for the wave trajectory. 

Let the geodesic line is set in the form of   btatxx ii  , . Let the parallel 

displaced tangent vector is i . Outgoing from the fact that collinear vectors are par-

allel, we may pass over to the canonical parameter along curve  . For this parame-

ter: 
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Making use of the definition of the geodesic line and the definition of parallel 

displacement follow from (1), we have: 

.
k j

k i
ij

dx dx
d dx

d d
 

 
 

By dividing the right- and left-hand parts by d , we have a geodesic line 

equation in the form referred to the canonical parameter: 
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 (5) 

Formula (5) may be considered as a system of second-order non-linear differ-
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ential equations, the integral lines of which are geodesics. 
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The problem of equilibrium stability for deformable bodies is of major im-

portance both from theoretical and practical points of view, because the exhaustion of 

load-carrying capability and collapse of buildings and engineering structures quite 

often occurs due to buckling under external loads. In the case of elastic medium, the 

stability theory is extensively developed for classic non-polar materials. There is 

large number of studies on stability both for thin and thin-walled bodies in the form 

of rods, plates and shells, and for massive (three-dimensional) bodies. However, due 

to the increasing number of new structural materials, the problem of stability analysis 

for bodies with a microstructure becomes relevant. One example of such materials is 

a porous material. Engineering structures made of porous materials, especially metal 

and polymer foams, have different applications in the last decades [1–4]. The foams 

are cellular structures consisting of a solid metal (for example aluminium, steel, cop-

per, etc.), or polymer (polyurethane, polyisocyanurate, polystyrene, etc.) and contain-

ing a large volume fraction of gas-filled pores. There are two types of foams. One is 

the closed-cell foam, while the second one is the open-cell foam. The defining char-

acteristic of metal and polymer foams are the very high porosity: typically, well over 

80%, 90% and even 98% of the volume consists of void spaces. 

Constructions made of porous materials are widely used in modern industries 

with airspace or automotive applications among others. The reason for this is the ad-

vantages of such materials: better density-stiffness ratios in comparison with classical 

structural materials, the possibility to absorb energy, etc. As a rule, these construc-

tions have a functionally graded structure. For example, the porous core is quite often 

covered by hard and stiff shell, which can be necessary for corrosion or thermal pro-

tection, and optimization of mechanical properties in the process of loading. 

The present research is dedicated to the stability analysis of nonlinearly elastic 
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