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In this paper. we established the consistency and asymptotic distribution of
estimation of parameters for GARCH{(1,1) process with the errors, whose squares have
regularly varying tail probabilities with the index @, @ >0. Using a modification of
Gaussian quasi-maximum likelihood estimation, we showed that, the estimation of our
method is consistent, the asymptotic distribution can be normality, or stable randoem
variable with other values of @.
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INTRODUCTION

In the analysis of financial data, the best-known and most often used processes are
Autoregressive Conditionally Heteroskedastic {ARCH) and its extensions generalizations -
Generalized Autoregressive Conditionally Heteroskedastic (GARCH) processes, see F. Engle

[6] and T. Bollerslev [3]. The first order GARCH processes (GARCH(1,1)) are given by

y, =08, and 6] =0, +0,y,, +B,0,,. 1=0, 1, +2. ., (1)
where ©, >0, a, >0, B, >0. {g,} is an independent and identically distributed sequence of
random variables {r.v.s). The necessary and sufficient conditions for the existence of a unique

strictly stationary and ergodic solution of (1) was studied by D. Nelson in [11], who showed
that, the process (1) have an unique strictly stationary and ergodic solution if and only if
Eln(B, +a,e,) < 0.

It is known that, provided the error distribution has finite fourth moment, quasi-maximum
likelihood estimators for ARCH/GARCH processes are asymptotically normally distributed
with the standard rate V. see [1, 7. 9]. When the errors have heavy tail probability, parameters
estimation of process GARCH has investigated by T. Mikosch, and D. Straumann in {10, 12].
They showed the consistency and asymptotic distribution of quasi-maximum likelihood
estimation. In this paper, we consider the parameters estimation of process (1) with the errors.
whose squares have regularly varying tail with index @, a@>1. and use a modification of
Gaussian quasi-maximum likelihood for estimation of parameters. At first, we survey the
definition and some properties of multivariate regularly variation of a random vector. We say

that, the distribution of random vector X is muitivariate regularly varying with index @ > 0. if
. m—1 m—i .
there exists a sequence of constants {X,} and a random vector @ € §", where S is the

unit sphere in R” with respect to the norm | .|, such that
nPOX >, X1 X e ) —>1“P(®c 4), 1>0.as >0, (2)
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where 4 is a Borel set, 4 < S""'. This is equivalent to the condition that for all >0
PUX[>tx, X7| Xl 4)
Py
where "—-—" denotes vague convergence on S””'. The distribution of ® in this formula is
called the spectral measure of X.

Remark 1. If X is a-stable random vector with stable index @ <€{0,2), then it is
multivariate regularly varying with the same index @, and the multivariate regular variation of
X implies regular variation of | X |: P(| X |> x) = x™*L(x), as X = o0, where L(x) is slowly
varying function, i.e., L{tx)/ L{x) —» | as x - o for every ¢ > 0. See [8] for details.

We recall that a stationary sequence {.X,},_, is strongly mixing if

sup |P(ANB-P(APBY) |=a, >0, as k > », {4)

el X, 150}, deaf¥, 1>k}
If sequence {a,},., decays to zero at an exponential rate, then {X,} is said to be strongly

mixing with geometric rate. An overview of properties of regular variation and the mixing
properties may be found in |2, 8].

— ™ P(® g A), as X > X, (3)

ASYMPTOTIC DISTRIBUTION OF THE ESTIMATION

Let consider process (1) with the errors, whose squares have regularly varying tail

probability with the index o, o > 0. The modification of likelihood function is defined as
following

L(6)=- 21(9), f,(G)-»-»[lnc (e)+1[ yfe)H (=1,2, 0 n,

where o7 () is parameterized conditional variance of the process, o; (8) = m+ay,., +Bo’, (8),

with the parameters 8, 6=(m,a,p),0>0,0>0,p20, EG+ael)” <1, p>0. At firs,

;I consider the first and second derivatives of the modification of the underlying log-likelihood
! L,(8). Easy to see that

" Ay 2 ; 2 =t 7 ' " P P 2 9 ,
Lﬂ'(e)-_-%z[(},) @OV @) (s, (e))]: 1 Z[{ y ] _1}((,, oy

i=l (Glr (9))-? U.-? (e) R t=| G:z (9) Uf_ (e)
Therefore, since o7(8,) =o’. we have
1 < - I 1 l L 3
L'(®,) =~ [(e) ~11=(c](8,)) =— Y (&))" ~1}4,. (5)
n i=1 G; n =t
where
1 el ] - =1 2 1 - 71 U!-—f
=—{(67(0,))= — .= g, — (6
Uf ( U-) (I_BO sz G, JZ ’ .'QJZ= G, )
By the same way

v 1S ¥ Y e on” y2 Y @y (2O
Lt = f _ i - _ ! R '}'
O ng{{[cf(e)j 1} 52 (0) {”(‘0 D(cf(e)} }( of(e)] c?(e)} )
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Remark 2. From (5) and (7) we see that, L,'(6,) and L,"(8,) are processes of
a18 measurable functions of strictly stationary and ergodic process {g,}. Therefore they are also
) strictly stationary and ergodic processes.
t 'i Lemma 1. Assume that, 4, is defined at (6), {€’},., are regularly varying with index a.,
| ¢
Ay a >0, then {{(€}) ~1]4,},.,. p>0. are multivariate regularly varying with the index a/ p.
Proof. Since the regularly varying with index a of {¢;},.,, we have that, {(s})"},., are
regularly varying with index o/ p. Since {4], it suffices to show that, for all & >0, the absolute
4) moments order k” of components of 4, are finite. Actually, since 6’ = @, we have
k
gly E[ ! -1-2—] S__“‘]““—F < o0, (9)
ing 1 "I-)’n o, [(1 _Bo )(’)n]
Next, for every j=1, 2, ...,
K
L:: = 1 T3 = : T S 1_[
o, @, +(B, to,e )0, (B +aE )0 =t (B + 0, -I)G
2] Therefore, since o, 2w, forall re Z.
as - G [ - B,
- 2; S_‘ZBﬂ; In *“_Zﬁo iI—[ - (0

O =) e By + o) o, T (B +
Put g = E[B, /(B, +a0£f_, 3 <1, from (10), using Minkowski’s mequahty

), ( ZBO”’—J} <“):Bo“'[ (H—Lﬂu <L 38 <o (1)

G, =l / Wy 4= rl(ﬁi)+angxl) Wy o

;;I

At the end, since (5), we have
f

i~ 2 -t o2 4 1 | = aﬂef—_i ' BU
_Zﬁo N £ ;—WZB“ " €. ‘H = z : H(Bn"'anss-a).

G, = 0 i (Bo +aE),) @ 4T (By + 008, ) i
By the same way, using Minkowski’s inequality, for all & >0, we obtain

. Pl L { . aﬂgi‘; P LU , BO PR
i < : E —_—
|: ( o ZBO &, ;} :l < e ; E((Bu +CLUS,2.,)J \: (l;[ (BO +(1¢,5,1‘,)J }

&,
< gt <o, (12
W0y :Z=1:

Combining (9), (11} and (12) we get the proof of the lemma.
Theorem 2. Assume process (1) with the errors, whose squares have regularly varying tail

probabilities with index o, a>0. o/ p>1. E(g;)*" =1, then there exist 6, be local
minimum of Z_(0) in some neighborhood of 6,, and

M
8, —>06,, as n—> .
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Proof. The existence of local minimum BA" of L (8) in some neighborhood of 8, can be

proved as Lee at al. in [9]. Since remark 2, the consistency of 6;‘; in this theorem can be proved
as the same argument in [1, 7] with noting that, if ()" have regularly varying tail probabilities
with index &/ p, o/ p >1, then E(gl) <.

As argument in [1], we can prove that, there exists the following non-singular matrix

IICHOVARCAC D)
‘”ﬁ =~ J ol |

Theorem 3. Assume process (1) and the function L (€), which satisfy conditions in

theorem 1, @, is defined in theorem 2, we have

i)if @/ p22, then n'' (8,0, ) <> N(0.2G™) as n—» o,
where Z=1C, 1= E(g})" ~1, C=E(4,4,), G=-ENl+(p-1)|¢; |'1B.

iiyif 1</ p <2, {[(g}) —1]4} is strongly mixing with geometric rate, then

na;' (&,—90)—"—).5'“”3 as n-»m,
where S, is o/ p-stabler.v.. g, is defined by a, =infixe R* : nP((&;)" > x) <1}.
Proof. Since remark 2. (8), the assumption that E(g;)*'” =1 and by ergodic theorem in
[5], we have
L"(6,)—2>G, as n—> o (13)
Thus, since theorem 2, there exists n, € N, such that

L'(8.)=0, forall n>n,
By the mean value theorem, with some point 7 in some sufficiently small neighborhood
of @,, we obtain

(en_ SU)LH"(H) = Ln‘(gn) - Ln I(GO) = "'Ln‘(eﬂ)' (14)
Inthe case &/ p =2, since (5), (13) and (14), we have

n(6,~8)~n"?Y (g7 ~1]4G", as n >0, (1%
=1
Put D, is arbitrary linear combination of components of 4, =1, 2, ..., n, by Cramer-

Wold theorem (see [2], Theorem 7.7), it is sufficiently to show the asymptotic disiribution of
sequence n-uzz; [(¢’)" -1]D,. From lemma 1, D, has finite covariance. Hence,
{[e?y -1]D,} is a stationary ergodic martingale difference sequence. Appling the central limit

theorem for martingale difference sequence (see [2], Theorem 23.1), where
D=Var([(g})" -1)D,] = tED],

n'”zi[(f:f)” ~1}4, —£->.N(0, D).
1=}

Therefore, where £ =1C is the covariance matrix (g; ~1)4,, we obtain
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n'“?i[(gf)f’ —1]4, —-N(0. Z).

Combining (13), (14) and (15) we get the proof of the first part of the theorem.
In the case 1 <a/ p <2, since (5), (13) and (14), we have

na; 6,6~ a3 [(e}) ~14G", as n — . (16)
=1
Since (14), lemma 1, and the strongly mixing with geometric rate property of sequence
{{(e’) —114,}, we derive that, the sequence {[(s’)" —1]4,} satisfies conditions Al, A2 and A3

of theorem 7.4.1 in [12]. Therefore, since this theorem, we have

a;'i[(gf ) ~1]4, —>S

wip> 38 1 —> 0, (17)

i=l

where S, isa @/ p -stable r.v.

Combining (16), (17) and Cramer-Wold theorem, we get the proof of the theorem.
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