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Abstract
A comparative analysis of the Mathisson-Papapetrou and Pomeransky-Khriplovich equations is
presented. Motion of spinning particles and their spins in gravitational fields and noninertial frames
is considered. The angular velocity of spin precession defined by the Pomeransky-Khriplovich
equations depends on the choice of the tetrad. The connection of such a dependence with the
Thomas precession is established. General properties of spin interactions with gravitational fields
are discussed. It is shown that dynamics of classical and quantum spins in curved spacetimes is

identical. A manifestation of the equivalence principle in an evolution of the helicity is analyzed.
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I. INTRODUCTION

Spin dynamics in curved spacetimes is an important part of spin physics. Spin effects in
gravitational fields and noninertial frames are important not only for particles but also for
gyroscopes and even celestial bodies. Many such effects can be discovered and investigated
in cosmic experiments. Therefore, a necessary theoretical description of the spin dynamics
in curved spacetimes should be carries out.

Pioneering calculations of the spin effects in gravitational fields were made soon after the
creation of the general relativity [1, 2, [3]. However, an investigation of mutual influence of
particle and spin motion in curved spacetimes was started from the excellent work by M.
Mathisson [4]. Another investigation of this problem was performed by Pomeransky and
Khriplovich [3].

We present a comparative analysis of different equations of motion of spinning particles
and their spins, discuss their connection with the equivalence principle, and investigate spe-
cific effects. In the next section, we introduce the Mathisson-Papapetrou equations (MPE).
In Sec. 3, we briefly discuss general properties of spin interactions with gravitational fields.
Next section is devoted to the comparison between the MPE and Pomeransky-Khriplovich
equations (PKE). Equations of spin motion in stationary spacetimes are discussed in Sec. 5.
In Sec. 6, the spin effects in classical and quantum gravity are compared. A manifestation of
the equivalence principle in an evolution of the helicity in gravitational fields and noninertial
frames is analyzed in Sec. 7. Finally, in Sec. 8 we discuss previously obtained results and
summarize the main results of the work.

Throughout the work tetrad indices are designated by first Latin letters. Greek indices
and other Latin indices run 0,1,2,3 and 1,2,3, respectively. The metric signature (+, —, —, —)
is chosen. We use the designations [...,...] and {...,...} for commutators and anticom-
mutators, respectively. We use the term “tetrad vector” for vectors formed from tetrad

components.

II. MATHISSON-PAPAPETROU EQUATIONS

The famous MPE first found by Mathisson [4] and then rediscovered by Papapetrou [6]

describe dynamics of a classical spinning particle and their spin in curved spacetimes. All



multipole moments of an extended body in a gravitational field was taken into account by

Dixon [7]. The explicit form of the MPE is

Dp* 1 U on

= 5 ftest’S*, (1)
DSH Y Y

s = p'u” — p'ut, (2)

where u” and p” are the four-velocity and four-momentum of the spinning particle, re-
spectively, Ry}, is the Riemann curvature tensor of the spacetime, and D/(ds) means the
covariant derivative with respect to the interval ds.

These equations should be supplemented with the condition [4, §]
S, = 0 (3)

or [1,19, [10]
S, =0, (4)

The MPE characterize the pole-dipole approximation, when multipole moments of higher
orders are neglected. These equations predict the mutual influence of particle and spin
motion. In particular, spinning particles undergo an additional force which is similar to
the Stern-Gerlach force in electrodynamics. As a result, spinning particles do not move on
geodesics in curved spacetimes.

In a zero approximation, one can neglect the mutual influence of particle and spin motion.
In this approximation, the spin tensor is parallel transported in the spacetime and the MPE

take the form
Dp* B

dS - 07 (5)
DS

i )
Pt = mcu, (7)

where m is the mass of the particle.

III. GENERAL PROPERTIES OF SPIN INTERACTIONS WITH GRAVITA-
TIONAL FIELDS

General properties of interactions of classical spin with gravitational fields can be ob-

tained, when the mutual influence of particle and spin motion is neglected.



The curvature of spacetime conditions a precession of moving spinning particles and
gyroscopes (geodetic effect |1, 12]). Additional rotation of the spin in a gravitational field
of a rotating body is caused by the frame dragging (Lense-Thirring effect [3]). This effect
results in appearing an additional acceleration similar to the Coriolis one and an additional
precession of satellite orbits and the spin. Similar effects take place in a rotating frame. In
the nonrelativistic approximation, resulting motion of the spin is given by [11]

dS " _3GM G [S(J r)r J] 7

(rxv)+ (8)

c?r3 r?
where M and J are the mass and angular moment of the central body and v is the velocity of
spinning test particle. As was mentioned in Ref. [11], Eq. (&) is consistent with approximate
Mathisson-Papapetrou equation ().

Eq. (8) results in the conclusion that an anomalous gravitomagnetic moment (AGM)
and a gravitoelectric dipole moment (GDM) are equal to zero. Indeed, the angular velocity
of spin rotation depends on neither the mass nor the spin. Therefore, the relation between
the torque dS/dt and the spin S is the same for all particles/gyroscopes. This is an explicit
manifestation of the absence of the AGM. The equality of angular velocities of spin rotation
of all particles in the stationary spacetime created by the rotating body is another manifes-
tation of the absence of the AGM. Evidently, the latter property is also valid for spinning
particles (gyroscopes) in the rotating frame. The absence of the GDM results from the fact
that the spin of particle at rest does not interact with a static gravitational field if tidal
forces can be neglected.

It is not evident whether the above mentioned conclusion remains valid for quantum
particles. This problem was much-discussed (see Ref. [12] and references therein). Never-
theless, an explicit solution of the problem was obtained many years ago by Kobzarev and
Okun [13]. In this work, gravitational interactions of spin-1/2 particles have been considered
and important relations for gravitational form factors at zero momentum transfer have been
derived. It was proved that gravitational and inertial masses are equal (f; = g = 1), any
gravitomagnetic moment is “normal” [i.e. the AGM is equal to zero (fy = 1)], and the GDM
is equal to zero (f3; = 0). The generalization of these properties to arbitrary-spin particles
was made by Teryaev [14].

The absence of the GDM results in the absence of spin-gravity coupling

W~g-8S, 9)
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where g is the gravitational acceleration.

The relations obtained by Kobzarev and Okun lead to equal frequencies of precession of
quantum (spin) and classical (orbital) angular momenta and the preservation of helicity of
Dirac particles in gravitomagnetic fields (i.e. the fields defined by the components g;o of the
metric tensor, see Ref. [14] and references therein). Any reference frame characterized by
the nonzero g;o possesses these properties. In particular, one can mention the gravitational
field of massive rotating body and the noninertial rotating frame.

Thus, the general properties of spin interactions with gravitational fields are the same for
classical and quantum particles.

Similarity of Eqs. (B) and (6] conditions conformity of particle and spin dynamics in
the general relativity. The equality of angular velocities of spin rotation of all particles is
similar to the independence of particle accelerations in curved spacetimes on their masses.
Therefore, the above discussed general properties of spin interactions with gravitational
fields can be considered as the manifestations of the equivalence principle in spin-gravity

interactions (see Ref. [14]).

Iv. COMPARISON BETWEEN MATHISSON-PAPAPETROU AND
POMERANSKY-KHRIPLOVICH EQUATIONS

There are two possible methods used for the derivation of the MPE and PKE [5]. First
method consists in a search for appropriate covariant equations. This method was utilized
for the derivation of classical equations of spin motion in electromagnetic fields [15, 16, [17].
The Thomas-Bargmann-Michel-Telegdi (T-BMT) equation [15, [16] and the Good-Nyborg
equation (GNE) [17] describe spin dynamics in uniform and nonuniform electromagnetic
fields, respectively. The same method was applied by Mathisson [4] and Papapetrou [6] for
obtaining equations of spin motion in curved spacetimes.

Second method consists in a deduction of equations on the basis of some physical princi-
ples without an attempt to obtain covariant final equations. Pomeransky and Khriplovich
[5] used this method for the derivation of equations of spin motion in electromagnetic fields
with allowance for terms of the first and second orders in spin. This method is based on the
fact that the three-component spin defined in a particle rest frame is a noncovariant quantity

[5]. The use of covariant equations may be possible if coordinates are redefined [3]. The



validity of the “noncovariant” H] approach was confirmed with a comparison between the

GNE, PKE for the electromagnetic field [3], and the equation deduced in Refs. B, frolm
g

that the Foldy-Wouthyusen (FW) transformation followed by the semiclassical transition

the Hamiltonian for spin-1 particles in the electromagnetic field [20]. It was shown

results in the equation of spin motion which agrees with the PKE but contradicts to the
GNE. This is an indirect confirmation of the noncovariant approach which was also used [5]
for description of gravitational interactions.

To find a connection between MPE and PKE, we use the results obtained by Chicone,
Mashhoon, and Punsly ] The relation between the four-momentum and four-velocity
has the form

p" = meu” + E¥, (10)
where the order of magnitude of E* is given by

1 . Dp,
E" ~ %Swd—i' (11)

The additional four-force is DE*/dr, where 7 is the proper time. This four-force is of
the second order in the spin [21]. The approximate equation of the first order in the spin
resulting from Eq. () is [21]

Du#
ds

1
me = —iRﬁaﬂu”Sa’B. (12)

Eq. (8) and the PKE unambiguously show that the spin dynamics depends on derivatives
of the metric tensor. The right hand side of Eq. (2] defined by Eqs. (I),(IQ),(TT) is of order
of

1
pru” — pPut ~ %R,\amuau”S“’\Sﬂ"’. (13)

This quantity is much less than terms defining the spin motion in the PKE H], when the

weak-field approximation is used. In this approximation

|guu - null| — |huu| < 17 (14)

where the tensor 7, characterizes the Minkowski spacetime. In addition, the right hand
side in Eq. (I3)) is of the second order in the spin tensor. Therefore, the correction to Eq.

(@) is rather small. When terms of the first order in the spin are retained, the MPE reduce

to Eqs. (@),(12).



To derive the corresponding equation for the spin (pseudo)vector S* in the same approx-
imation, we can use the known connection between the spin vector and the spin tensor [22]
and Eq. (I2). When only terms of the first order in the spin are taken into account, the

equation for the spin vector is given by

DS
~ 0. 15
7 =0 (15)

This is the initial equation used by Pomeransky and Khriplovich [3]. Therefore, we
can conclude that the spin dynamics predicted by the MPE and PKE is the same in the
first-order approximation in the spin. A possible difference between two approaches can be
caused by second-order terms in the spin (including quadrupole interactions). Such terms
was calculated in Ref. [5] in the framework of quantum theory. In the present work, we
confine ourselves to the discussion of first-order spin effects.

Eq. (I5) should be supplemented with the orthogonality condition
Stu, = 0. (16)

The method developed by Pomeransky and Khriplovich [5] is based on the equations of
motion of particles and their spins in the zero approximation [Eqgs. (Bl and (I3), respectively].
In Ref. [5], the former equation was written for the four-velocity and the tetrad formalism
was used. The equations for the tetrad components of the four-velocity u® = eju" and the
four-component spin S* = e}, S* are [5]

duy, .
E - ’7abcubu 3 (17)
ds, .
s = YapeSPUC. (18)
Here eZ is the vierbein and
Yabe = eau;l/egez = —Vbac

are the Ricci rotation coefficients [23].
Evidently, these equations are similar to the equations of motion of particles with zero

anomalous magnetic moment (¢ = 2) and their spins in an electromagnetic field:

% e v dSp _ iFl“,SV, (]_9)

=—F,u —
dr me "7 dr me

where F),, is the electromagnetic field tensor.
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Therefore, the following correspondence takes place [3]:
€ c
2Fab > Yabclh (20)
me

The antisymmetric electromagnetic field tensor has six independent components and is

defined by the electric and magnetic fields:
Fu < (E, B). (21)
One can similarly define the gravitoelectric and gravitomagnetic fields:

C“EwE SBoB oyl o (EB) (22)
mc mc

An important difference between the electromagnetic and gravitational interactions consists
in the fact that v,.u® is not a tensor. Explicit expressions for the gravitoelectric and

gravitomagnetic fields are (see Ref. [3])

c
52 = cyoicu’, B; = _Eeifcfmlcucv (23)

1

where e;;; is the antisymmetric tensor with spatial components. To avoid misleading coinci-
dences, zero and spatial tetrad indexes are marked with hats (except for the Ricci rotation
coefficients).

The comparison with the T-BMT equation [15, [16] allows to obtain the angular veloc-
ity of spin precession. Pomeransky and Khriplovich introduced the three-component spin

(pseudo)vector S and obtained the exact equation of its precession [3]

ds 1 u¥ uf
= Qx8, O =cey; (§’Yklc + m%lc) 00 (24)
that is equivalent to X
1 . ux€&
Q=—|-B . ) 25
u? l N ul + 1] (25)

The factor 1/u’ is caused by the transition to the differentiation with respect to the
world time ¢. The definitions of € in Refs. [5, 25] and the present work differ in sign.
When the differentiation is performed with respect to the tetrad time (df = u’dt/u®), Eq.
(23)) coincides with the T-BMT equation for Dirac particles (¢ = 2). The gravitoelectric and
gravitomagnetic fields are defined via their tetrad components. The quantity €2 characterizes

the spin precession in the world frame, while the spin S is defined in the particle rest frame.



In this connection, the dependence of €2 on the choice of the tetrad must result from a
change of the particle rest frame.

For a Schwarzschild metric, the exact expression for £ was obtained in Ref. [25].

The corresponding equation of particle motion has the form

T (26)

do [, axB\ d’ E-a
(8+258), % -
When the differentiation is performed with respect to the tetrad time, Eq. (26]) coincides
with the Lorentz equation. Eqs. (I7),(26) describe the particle motion along geodesic lines.

Definition (23] of the gravitoelectric and gravitomagnetic fields significantly differs from
the usual one. In particular, the Pomeransky-Khriplovich gravitomagnetic field is nonzero
even for a static metric.

There is a one-to-one correspondence between the angular velocity of precession of
the three-component spin and spin-dependent terms in classical |3] and quantum [24] La-
grangians and Hamiltonians. To derive spin-dependent corrections to classical Lagrangians,
Poisson brackets was used in Ref. [5]. When classical and quantum expressions for Q coin-
cide, the spin-dependent terms in classical and quantum Lagrangians/Hamiltonians derived
with the Poisson brackets and commutators, respectively, are also the same. These terms
are given by

L=Ly+0Q-8, H=H,—Q-8S, (27)

where Ly and Hy define sums of spin-independent terms. It will be shown below that Eq.
(24) agrees with corresponding equations derived in the framework of quantum theory. As
a result, classical Lagrangians and Hamiltonians defined by Eqs. (24) and (217) must agree
with corresponding quantum Hamiltonians. Thus, the PKE are consistent with the quantum
gravity at least in the first-order approximation in the spin.

Influences of the spin on a particle trajectory in a gravitational field predicted by the MPE
and PKE significantly differ [5, 25]. It was stated in Refs. [5, 25, 26] that the MPE are not
consistent with Eq. (8) describing the geodetic effect (gravitational spin-orbit interaction).
In the Pomeransky-Khriplovich approach, the consistence of motion of particles and their

spins results from Eq. (271).



V. EQUATIONS OF SPIN MOTION IN STATIONARY SPACETIMES

While MPE (6) is equivalent to PKE (I3]), general equation of spin motion (24]) was
obtained only in the framework of the Pomeransky-Khriplovich approach. However, the
Pomeransky-Khriplovich method needs to be grounded. Eqs. (I8)) and (I9) describing
the motion of the four-component spin vector in gravitational and electromagnetic fields,
respectively, are very similar. However, there exists an important difference between the
corresponding equations for the three-component spin vector. Since the latter vector is
defined in the particle rest frame, the spatial components of the four-velocity satisfying Eq.
(I6) are equal to zero in this frame. Such a definition of the velocity is ambiguous because
this quantity can be characterized by covariant, contravariant, and tetrad vectors. A definite
choice can be made due to a local Lorentz invariance. The spacetime metric tensor locally has
the Minkowski form 7, of special relativity in any freely-falling reference frame including
the particle rest frame (see Ref. [27]). Tetrad components of any vector are similar to
components of vectors in a flat spacetime. In particular, covariant and contravariant tetrad
components of vectors are equal up to sign. Since the spacetime interval in tetrad coordinates
takes the Minkowski form, tetrad reference frames are flat and correspond to local Lorentz
frames.

The particle velocity is zero and the spacetime is flat in the particle rest frame. In this
frame, just spatial tetrad components of the particle velocity are zero (@ = 0). It is natural
because any observer carries a tetrad frame (see Ref. [28]). Corresponding covariant and
contravariant components (ul and u;, respectively) can be nonzero. Since the orthogonality

condition can be written in the form
S%u, =0, (28)

the three-component spin is composed by spatial components of the four-component tetrad
spin at condition that @ = 0. Thus, the three-component spin is a tetrad (pseudo)vector.
Such a definition of the three-component spin was used in Refs. |3, 123)].

The definition of the three-component spin as a tetrad (pseudo)vector can be additionally
justified by its consistency with the definition of the spin operator in quantum theory. The

covariant Dirac equation for spin-1/2 particles in curved spacetimes has the form
(thy*D, — mc)y = 0, a=0,1,2,3, (29)
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where v* are the Dirac matrices. The spinor covariant derivatives are defined by
1
Dy = €Dy, Dy= 0+ jouly, (30)

where FZ” = —TZ“ are the Lorentz connection coefficients, 0®* = i(7*7" — 7°7*)/2 (see Refs.
[29, 30] and references therein). Because the matrices 7 are defined in the tetrad frame,
they coincide with the Dirac matrices.

To obtain the equations of motion of particles and their spins, one can in principle use any
tetrad. However, it does not mean that a choice of the tetrad is not important. In Eq. (24)),
the angular velocity of spin rotation should correspond to the quantity measured by a local
observer. As a result, parameters of the definite tetrad frame carried by the observer should
be substituted into this equation. For the observer in a uniformly accelerated, rotating

frame, the tetrad e, transports along the observer’s world line according to [28]

de,
dr

where = is the antisymmetric rotation tensor. This tensor consists of the Fermi-Walker part

=Ee,, (31)

Zprw and the spatial rotation part 2 [28]:

e — mRY g Y =HY v

— MV K =My afuv

where a* is the four-acceleration of the observer, w* is its four-rotation, and €***” is the
Levi-Civita tensor.

For the uniformly accelerated, rotating frame, the exact formula for the orthonormal
tetrad satisfying Eqs. (31),([32) was found by Hehl and Ni [31]. The corresponding vierbein
has the form

a-r ; wxr)
2 eo - 07 66 = —fJoi = %7 63- - 6ij7 (33)

68=1+

where §;; is the Kronecker delta. Vierbein (B3]) is attributed to the observer being at rest in
the uniformly accelerated, rotating frame [28, 31].

Since the equivalence principle predicts the equivalence of gravitational fields and non-
inertial frames, the result obtained in Ref. [31] can be used for any spacetime defined by
a metric tensor with go; # 0. Nonzero gy; components are connected with the proper local
three-rotation w. In the weak-field approximation, the generalization of the tetrad found in
Ref. [31] is given by
1

—hyj. (34)

=0, 66 = —Qoi, €;= 51‘]' - 5

¢ J

R 1 R
68 =1 + §h00, 60
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This vierbein can also be presented in the equivalent forms
1 1
€ho = 1+ Ehog, €5 = 0, € = Joi, €5 = —(51’]' —+ Ehw (35)

and

1 : ; 1
68 =1- §h00, 6% = 904, eg == 0, eg = 5@‘ + ihm (36)

Vierbeins (34)-(B6]) are connected with the observer at rest.

The nonzero Ricci rotation coefficients are equal to

1 1
Yioo = 5900,11 = —oios  7ioj — i(goi,j + ng,i) = —oij, (37)
Yijo = 5(903‘,1’ - gom‘); Yijk = E(gjk,i - gik,j)-

Alternatively, one can use the vierbeins proposed by Pomeransky and Khriplovich E]

" 1 5 1 5 1 5 1
eg =1+ §h00, e) = 390 ey = —590i €; = 0jj — ihij; (38)

and Landau and Lifshitz ]

hi. (39)

A ]_ A 3 3
68:1+§h00; 6?2901‘; eg = 0, 6;:51‘3‘—

Formulae ([B4)-(B9) are given in the weak-field approximation.
The expression for the Ricci rotation coefficients obtained in Ref. E] with the
Pomeransky-Khriplovich tetrad differs from Eq. (B7):

1

1
Yabe = E(hbc,a - hac,b) - E(gbc,a - gac,b)- (40)

If a tetrad does not satisfy Eqs. (31]),(B2), it is not attributed to the observer’s frame.
We can consider an influence of the choice of the tetrad on equation of spin motion (24)).
The connection between different tetrad frames can be expressed by appropriate Lorentz
transformations. Let the vierbeins e and ¢’ define two tetrad frames and the unprimed
vierbein is attributed to the observer’s rest frame. The connection between tetrad and world

coordinates is given by

dr® = eydat, da' = €' dat. (41)

Eq. (4I) leads to the relationship between tetrad coordinates in two frames:
do® = Teda", Ty = eles. (42)
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Since this relationship defines a Lorentz transformation, the primed frame moves with the
relative velocity V. This velocity is equal to zero only when T;O =0, Tg =0,:=1,2,3. In
this case, the primed frame can be obtained from the unprimed one with a turn of the triad
e; in the three-dimensional space. Evidently, this turn does not change the observer’s rest
frame and the condition V' = 0 remains valid. Such a turn does not distort the dynamics of
particles and their spins, while it changes the connection between world and tetrad velocities.

In the general case, the primed tetrad is attributed to the reference frame moving with
the velocity V relative to the observer. As a rule, this velocity is time-dependent. Eq. (28)
shows that the three-component spins S and S’ are defined in different reference frames.
Since accelerations of these frames do not equal, the Thomas precession causes a difference
between angular velocities of rotation of the (pseudo)vectors S and S'.

As a result, the reason of the change in the spin motion equation is the Thomas precession.
For relativistic particles, the angular velocity of the Thomas precession is given by [15, 32]

— T (gx{
Q=B %8), (43)

where v = 1/4/1 — 2 is the Lorentz factor.

The dependence of spin motion equation (24) from the choice of the tetrad was not taken
into account in Refs. [5, [25]. The tetrad used in Refs. [3, 23] for a derivation of equations
of spin motion in the world frame satisfies Eqs. (31)),(82) only for static spacetimes. To
determine the observable angular velocity for nonstatic spacetimes, one needs to supplement
the PKE with the correction for the Thomas precession.

To illustrate a dependence of Eq. (24) from the choice of the tetrad, we consider the
spin motion in the rotating frame. This problem can be solved exactly. The metric tensor

is given by [31]

2 c c c

_M 1 0 0 "

Juv = _M . . . ) (44)
(w xcr)(3) 0 0 1

where w is the angular frequency of the frame rotation. The use of Eqgs. (26),34)—(36)
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results in the following equation of particle motion:

di du?
_ = — 7 _— = 45
i w X u, 7 0. (45)

Eq. (#3) leads to the right equation for the contravariant acceleration du*/(dt) coinciding
with the well-known formula [33] for the sum of the Coriolis and centrifugal accelerations.

The corresponding angular velocity of spin motion obtained from Eq. (24)) is given by
Q=-w. (46)

This formula is also exact and coincides with previous results |31, 134, 135].

Pomeransky-Khriplovich vierbein (B8)) leads to the formula

u X (u X w)

Q=— — . 47
@+ 2u0(u® 4+ 1) (47)
The use of Landau-Lifshitz vierbein (39) results in
u X (u X w)
Q=- — 48
w u(u® +1) (48)

Eqgs. ([@T),(48) are obtained in the weak-field approximation. Evidently, these equations do
not give the observable angular velocity defined by Eqs. (46).

VI. COMPARISON OF SPIN EFFECTS IN CLASSICAL AND QUANTUM
GRAVITY

The correspondence principle formulated by Niels Bohr predicts a similarity of classical
and quantum effects.

The best compliance between the description of spin effects in classical and quantum
gravity was proved in Refs. [36, 137]. In these works, some Hamiltonians in the Dirac
representation derived in Refs. [29, 30, 31] from initial Dirac equation (29]) were used. The
initial Dirac Hamiltonians were transformed to the Foldy-Wouthyusen (FW) representation
by the method elaborated in Ref. [38]. The FW representation [39] occupies a special place
in the quantum theory. Properties of this representation are unique. The Hamiltonian and
all operators are block-diagonal (diagonal in two spinors). Relations between the operators
in the FW representation are similar to those between the respective classical quantities. For

relativistic particles in external fields, operators have the same form as in the nonrelativistic
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quantum theory. For example, the position operator is r and the momentum one is p =
—1hV. These properties considerably simplify the transition to the semiclassical description.
As a result, the FW representation provides the best possibility of obtaining a meaningful
classical limit of the relativistic quantum mechanics. The basic advantages of the FW
representation are described in Refs. [38, 139, 40]. The method of the FW transformation
for relativistic particles in external fields was proposed in Ref. [38].

The exact transformation of the Dirac equation for the metric
ds* = V?*(r)(dz®)* — W2 (r)(dr - 7) (49)

to the Hamiltonian form was carried out by Obukhov [29,130] (A =c¢=1):

0 1
za—f =Hy, H=pmV+ 5{.7-",04 -p}, (50)

where F = V/W. Hamiltonian (B0) covers the cases of a weak Schwarzschild field in the

isotropic coordinates

GM GM\ ! GM\?
v=(1-50) 1+ 50) - w=(1+5) (51)

and a uniformly accelerated frame

V=1l+a-r, W=1. (52)

The relativistic FW Hamiltonian derived in Ref. [36] has the form

%szﬁe+é{m;,\/—1}+é{%2,f-—1}

2 2
Bm
e B X p) =D (px9) 4 V9

Sm(2€® + 2e*m + 2em?* + m?)

8¢5 (e + m)? (p-V)(p-9)
mxp - mx A - v f),

where e = \/m? +p?, ¢ =VV, f=VF.

The use of the FW representation dramatically simplifies the derivation of quantum
equations. The operator equations of momentum and spin motion obtained via commutators
of the Hamiltonian with the momentum and polarization operators take the form [36]

dp B m? B [ p?
E_Z[HFWJP]__g{TJQ’)}_5{?7}0}

m

oYL (g% p) - S V(IL-(f %)) (54)
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and

darr
Y Z[%FWJ H] =

N 2 x (¢ xp) - 18 x (f %), (55)

e(e +m)
respectively.

Let us pass to the studies of semiclassical limit of these equations. The contribution of
the lower spinor is negligible and the transition to the semiclassical description is performed
by averaging the operators in the equations for the upper spinor [38]. It is usually possible
to neglect the commutators between the coordinate and momentum operators. As a result,
the operators o and p should be substituted by the corresponding classical quantities: the
polarization vector (doubled average spin), &, and the momentum. For the latter quantity,

we retain the notation p. The semiclassical equations of motion are [36]

dp =~ m? p? m 1
a = T T ey V@Rl g VI (Fxp)) )
and
d 1
@ e ) o

respectively. In Eq. (B6), two latter terms describe a force dependent on the spin. This force
is similar to the electromagnetic Stern-Gerlach force (see Ref. [38]). Because it is weak, the

approximate semiclassical equation of particle motion takes the form

dp m2 p2

o - f o8

o —¢——F (58)
The angular velocity of spin rotation is given by

m 1
Q:—m(cbxp)ﬂLg(fxp)- (59)

We can find similar equations describing a change of the direction of particle momentum,

n=p/p: ;
n

dt

A simple calculation shows that the corresponding equations of motion obtained from

=w X n, w:ﬁ?(¢xn)+z—j(f><n). (60)
ep €

the PKE for given metric (d9) coincide with Eqs. (56)-(60). In particular, the gravitational
Stern-Gerlach force defined by Eq. (B6) coincides with that obtained from the PKE. The

comparison with previous results obtained in framework of classical gravity was carried out

in Ref. [36].
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Although the gravitational Stern-Gerlach forces are rather weak, they are important.
These forces lead to the violation of the weak equivalence principle due to deflections of
spinning particles from geodesic lines [41].

Let us consider the interaction of particles with a spherically symmetric gravitational
field and compare the obtained formulae with previous results. This field is a weak limit of

the Schwarzschild one which yields
GM GM

V=1-"" W=1+—"". (61)
r r
“V)(p -
When we neglect the terms of order of w, Hamiltonian (53]) takes the form
€
2 3 B (e€+p* GM £(2e +m) 25 (g% p)+V (62)
= e — — — . .
w 2 e ' or 4e(e+m) gxp ik

where g is the Newtonian acceleration.
Neglecting the Stern-Gerlach force, one gets the semiclassical expressions for the angular

velocities of rotation of unit momentum vector, n = p/p, and spin:

€ + p* GM € + p?
we—CEP G 2P, (63)
€p r €p
2¢e +m GM 2e¢+m
Q=T g p="" l 64
e(e-l—m)gXp r3 e(e+m)’ (64)

where I = r X p is the angular moment.
Egs. (63) and (64) agree with the classical gravity. Eq. (63]) leads to the expression for
the angle of particle deflection by a gravitational field

p2

0 -

_ 2iM (2 m2> _ M (1+?) (65)

pv?
coinciding with Eq. (13) of Problem 15.9 from Ref. [42] (see also Ref. [43]). Eq. (64)
coincides with the corresponding classical equation obtained in Ref. [3]. This directly
proves the full compatibility of quantum and classical considerations.

In the nonrelativistic approximation, Eq. (64]) coincides with corresponding formula (&)
for the classical gyroscope. Such a similarity [13] of classical and quantum rotators is a
manifestation of the equivalence principle (see e.g. Refs. [14, 44] and references therein). In
the nonrelativistic approximation, the last term in Hamiltonian (62]) describing the spin-orbit

and contact (Darwin) interactions coincides with the corresponding term in Ref. [45].
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Performing the FW transformation for relativistic particles made it possible to solve the
problem of existence of the dipole spin-gravity coupling in a static gravitational field [36].
This problem was discussed for a long time (see Refs. [12, 129,130, 136] and references therein).
Evidently, this coupling given in form (@) contradicts to the theory [3,136] and violates both
the CP invariance and the relation predicting the absence of the GDM [13]. The classical
and quantum approaches lead to the same conclusion.

The equation for the Hamiltonian and the equations of momentum and spin motion
derived in Ref. [36] for a relativistic particle in a uniformly accelerated frame agree with
the corresponding nonrelativistic expressions from [31, 46]. The general equations for the

angular velocities of rotation of unit momentum vector and spin are given by

axp

w:I%(axp), Q= (66)

e+m’

The FW Hamiltonian and the operators of velocity and acceleration were also calculated
for the Dirac particle in the rotating frame [37]. The exact Dirac Hamiltonian derived in Ref.
[31] was used. In Ref. [37], perfect agreement between classical and quantum approaches

was also established. The operators of velocity and acceleration are equal to

p 2 2
V=P —wXTPr, €=4y/m*+Dp°,
o V p

w:QﬂM—f—wx(wxr):2v><w—w><(w><r). (67)
€

Quantum formula (7)) for the acceleration of the relativistic spin-1/2 particle coincides with
the classical formula [33] for the sum of the Coriolis and centrifugal accelerations. Obtained
results also agree with the corresponding nonrelatiistic formulae from [31].

Thus, the classical and quantum approaches are in full agreement. Purely quantum
effects are not too important. They consist in appearing some additional terms in the FW
Hamiltonian. However, these terms are proportional to derivatives of ¢ and f and similar
to the well-known Darwin term in the electrodynamics. As a result, their influence on the
motion of particles and their spins in gravitational fields can be neglected. The classical and
quantum equations of motion of particles and their spins are almost identical and can differ

only in small terms.
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VII. EQUIVALENCE PRINCIPLE AND SPIN

As mentioned above, the absence of the AGM and GDM is very similar to the weak
equivalence principle. All classical and quantum spins (gyroscopes) precess with the same
angular velocity, while all classical and quantum particles move with the same acceleration.
An equivalence of the inertia and gravity manifests in the fact that all gravitational and
inertial phenomena are exhaustively defined by the metric tensor and four-velocity.

Another manifestation of the equivalence principle was found in Ref. [36]. It was shown
that the motion of momentum and spin differs in a static gravitational field and a uniformly
accelerated frame but the helicity evolution coincides. In Eqgs. (59),([60) ¢ depends only on
goo but f is also a function of g;;.

The spin rotates with respect to the momentum direction and the angular velocity of this

rotation is

o:Q—w:—E(qun). (68)

The quantity o does not depend on f and vanishes for massless particles. Therefore, the
gravitational field cannot change the helicity of massless Dirac particles. The evolution of

the helicity ( = |§)| = &€ - n of massive particles is defined by the formula

dc m
EZ(Q—W)'(&X”)Z—;(SL@; (69)

where £ =& - &)
The same formulae can be derived from the PKE.

For particles in the spherically symmetric gravitational field, formula (68]) takes the form

o:Q—w:g(gxp). (70)

If the angle of particle momentum deflection € is small, the evolution of the helicity is
described by the equation [36]
02

where v = ¢/m is the Lorentz factor. The original helicity is supposed to be equal to +1.

(=1- (71)

The relative angular velocity defining the helicity evolution in the uniformly accelerated
frame is given by

o:ﬂ—w:—g(axp). (72)
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When a = —g, values of 0 in Eqs. (72) and (70) are the same. It is the manifestation of
the equivalence principle which was discussed with respect to helicity evolution in [14, 44].

At the same time, the manifestation of the equivalence principle for the spin rotation is
not so trivial. In particular, the spin of nonrelativistic particles in the spherically symmetric
gravitational field rotates three times more rapidly in comparison with the corresponding
accelerated frame [36].

The helicity evolution caused by the rotation of an astrophysical object was considered in
Ref. [14]. The effect of the rotation of a field source is characterized by the gravitomagnetic
field. This field makes the velocity rotate twice faster than the spin and changes the helicity.
Therefore, the helicity can locally evolve due to the rotation of the field source. Nevertheless,
the integral effect for the particle passing throughout the gravitational field region is zero.
Thus, the helicity of the scattered massive particle is not influenced by the rotation of an
astrophysical object [14]. Some other authors came to the alternative conclusion that the
above mentioned rotation changes the helicity of the scattered massive particle [47, 48]. To

obtain a definite solution of this problem, the PKE and the Dirac equation can be used.

VIII. DISCUSSION AND SUMMARY

The general equations describing the dynamics of classical spin in gravitational fields and
noninertial frames was obtained by Mathisson and Papapetrou [4, 6] and by Pomeransky
and Khriplovich [5]. The MPE and PKE are different in principle. Nevertheless, the spin
dynamics predicted by the MPE and PKE is the same in the first-order approximation in the
spin. This important conclusion shows that the Mathisson-Papapetrou and Pomeransky-
Khriplovich approaches lead to the same observable spin effects. Results obtained with two
approaches differ only in terms of the second and higher orders in spin. These terms are
proportional to derivatives of the second and higher orders of the metric tensor. Both of ap-
proaches predict the violation of the weak equivalence principle due to deflections of spinning
particles from geodesic lines. Such deflections are caused by the gravitational Stern-Gerlach
forces which are rather weak. Nevertheless, these forces are important because they con-
dition the violation of the weak equivalence principle [41]. The Mathisson-Papapetrou and
Pomeransky-Khriplovich approaches give different expressions for the gravitational Stern-

Gerlach forces. The expression resulting from the PKE agrees with that obtained from the
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Dirac equation.

The PKE are rather convenient for description of spin motion in the framework of classical
gravity. The general equation of spin motion [3] is valid in arbitrary spacetimes. However,
the angular velocity of spin precession defined by Eq. (24) depends on the choice of the
tetrad. The origin of such a dependence is the fact that reference frames defined by different
tetrads can move relatively to each other. In this case, the corresponding angular velocities of
spin precession differ due to the Thomas precession. We derive the exact equation describing
the spin dynamics in the rotating frame.

An important property of spin interactions with curved spacetimes is the absence of the
AGM and GDM [13]. The relations obtained by Kobzarev and Okun lead to equal frequen-
cies of precession of classical and quantum spins in curved spacetimes and the preservation
of helicity of Dirac particles in gravitomagnetic fields [14]. As a result, the behavior of clas-
sical and quantum spins in curved spacetimes is the same and any quantum effects cannot
appear. However, this point of view was not generally accepted until very recently.

The fact that dynamics of classical and quantum spins in curved spasetimes is identical
was also proved in Refs. [36,37]. The full agreement between classical equations of momen-
tum and spin motion and corresponding quantum equations obtained from solution of the
Dirac equation was established. The classical and quantum equations was compared not only
for gravitational fields but also for noninertial frames. The absence of any fundamentally
new spin effects is a manifestation of the correspondence principle.

Another manifestation of the equivalence principle is the helicity evolution. While the
motion of momentum and spin differs in static gravitational fields and uniformly accelerated

frames, the helicity evolution is the same [36].
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