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I. INTRODUCTION

The Foldy-Wouthuysen representation introduced in Ref. [1] occupies a special place in
the quantum theory. This is mainly due to the fact that the FW representation provides
the best possibility of obtaining a meaningful classical limit of the relativistic quantum
mechanics [1, 12, 13, 4]. The Hamiltonian and all operators in this representation are block-
diagonal (diagonal in two spinors). The basic advantages of the FW representation are
investigated in Refs. [1, 12,13, 4] and shortly described in Sec. [l

There are many methods of the FW transformation considered in Refs. [3, 4, 15, |6, [7, §]
(see also below). However, some of them are rather intuitive. Therefore, conditions of the
FW transformation and main properties of the FW representation should be determined.

In the present work, the basic properties of wave functions in the FW representation are
investigated and the connection between wave functions in the Dirac and FW representations
is found. Such a connection has been determined in Ref. [9] in the particular case when the
FW transformation is exact.

We also establish conditions of the transformation from the Dirac representation to the
FW one. The action of these conditions is illustrated by several examples. In particular,
the obtained result allows calculating the expectation values of operators corresponding to
the basic classical quantities. Explicit forms of these operators for relativistic particles in

external fields can be determined in the FW representation but not in the Dirac one.

II. FOLDY-WOUTHUYSEN REPRESENTATION

The use of the FW representation possesses the important advantages investigated in
Refs. [1, 2, 13]. The relations between the operators in the FW representation are similar
to those between the respective classical quantities. Only the FW representation possesses
these properties considerably simplifying the transition to the semiclassical description. The
Hamiltonian for a free particle fully agrees with that of classical physics in contrast with the
Hamiltonian in the Dirac representation [1].

We use the system of units 2 = ¢ = 1 and denote matrices as follows.

0 o 0 1 0 o 0 o 0
a=[fy= , B=v"= , XM= , II=pY =
o — o -0
0 0 -1 0 0



are the Dirac matrices; 0" are the Pauli matrices. 1p(x), ¥pw (2) are four-component wave
functions in the Dirac and FW representation, respectively. The scalar product of four-
vectors is taken in the form zy = a''y, = 29y — 2FyF o =0,1,2,3, k=1,2,3; p* =
i(0/0x,).

The position operator in the FW representation is . It is given by the cumbersome
expression in the Dirac representation [10]:

iBa if(a-p)p+[X X p||p|
2F 2E(E + m)|p|

D=7+ ) E = m2+p2'

For free particles, the momentum and velocity operators are expressed in a normal, close to
classical, way, p = —iV and v = p/FE (v = « in the Dirac representation).

In the FW representation, the problem of ” Zitterbewegung” motion never arises [2, [10].
The operators I = r x p and X/2 define the angular momentum and the spin for a free
particle, respectively. In this representation, unlike the Dirac one, each of them is a constant
of motion (see Ref. [1]). The corresponding operators conserving in the Dirac representation
are known only for free particles and are expressed by cumbersome formulae (see Refs.
[1,13]). The FW representation is very convenient for describing the particle polarization.
In this representation, polarization operators have simple forms. The three-dimensional
polarization operator is equal to the matrix IT [11, 12]. In the Dirac representation, this
operator depends on the particle momentum [3, 11, [12]. For particles interacting with
external fields, it also depends on external field parameters [12].

Thus, in the Dirac representation all operators corresponding to the basic classical quan-
tities are defined by cumbersome expressions. Moreover, these operators should also depend
on the external field parameters for particles interacting with external fields. Therefore,
explicit forms of such operators in the Dirac representation are usually unknown. We can
conclude that the preferable employment of the FW representation is evident, although the
relativistic wave equations are more complicated in this representation.

The use of the FW representation permits to reduce the number of components of the
bispinor wave function because one of the FW spinors is zero.

Note also that the derivation of the relativistic Hamiltonian H gy in Ref. [7] made it
possible to treat quantum-field processes in the FW representation within the framework of
the perturbation theory [§].

Equations for the wave function in the FW representation have a non-covariant form,



and the FW Hamiltonians are non-local and block-diagonal (they contain infinite sets of

differential operators and are diagonal in two spinors).

III. METHODS OF THE FOLDY-WOUTHUYSEN TRANSFORMATION

In this Section, we give an overview of known methods of the FW transformation.
In the presence of time-dependent external fields, transformation to the FW representa-

tion described by the wave function gy is performed with the unitary operator Ugpyy:
Vvrw = Upwtbp = €9,

where Yp = A is the wave function (bispinor) in the Dirac representation.
X
The Hamilton operator in the FW representation takes the form [1, [13]:

(111.1)

The Dirac Hamiltonian can be split into operators commuting and noncommuting with
the operator f:
Hp=m+E+0, BE=EB, pO=-0p5. (II1.2)

The Hamiltonian Hp is Hermitian. We assume that both operators & and O are also
Hermitian.

In the classical work by Foldy and Wouthuysen [1], the exact transformation for free
relativistic particles and the approximate transformation for nonrelativistic particles in elec-
tromagnetic fields have been carried out.

For free Dirac particles, £ =0, O = a - p.

The FW Hamiltonian (Ho) pw and the FW wave function ¢ pw () are related to the Dirac
Hamiltonian for free particles,

(Ho)p = fm + e p, (I11.3)

and to the Dirac wave function v, (z) by the unitary transformation

(Ho)rw = Uo(Ho)pUs = BE,  pw(x) = Uptp(x), Up= E;J—Em (1 N EB?O—{F:;> '

(111.4)



The FW equation for the free motion of a quantum mechanical particle with the spin 1/2

takes the following form:

povrw(x) = (Ho)rw¥rw (1) = BEYpw (). (1IL.5)

Solutions of Eq. ([IL5) are plane waves with positive and negative energy [1]:

1

1 —ipx - ipT
Yy (@) = Wue L g (a) = erp , po=E=+ym?+p*  (IIL6)

0
In Eq. ([IL6), U4 = ¢ and V = , ¢ and x are two-component normalized Pauli
0 X
spin functions.

For U and V), the following orthonormality and completeness conditions are true:
Uity = VIV =650, UVy = VU =0,
1 1
S U UDs =51+ Bs, >0 04,00 = 51— B,

S S

(I1L.7)

In expressions ([IL6), (IIL7), v, o belong to spinorial indices and s to spin indices. Further,
the sum sign and the indices themselves are not shown, when summing is performed in the
spinorial indices.

It has been shown in Ref. [3] that the exact FW transformation can be fulfilled with the

operator

_ /E+m BO Y s

on condition that the operators £ and O commute:
[£,0]=0. (II1.9)
In this case, the FW Hamiltonian is given by
Hrw = BE + E. (I11.10)

Eq. (ILIQ) agrees with formula ([IL3]) for free particles.

Condition ([IL9) is satisfied for the Dirac equation at a presence of the static external
magnetic field B = rot A (exact transformation by Case [14]) and also of some other inter-
actions described in Refs. [3, [15]. In the general case of interaction of a fermion with an
arbitrary boson field, condition ([TL9) is not satisfied and the problem of transition between

the Dirac and FW representations becomes much more complicated.
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The general form of the exact FW transformation has been found by Eriksen [5] for

stationary external fields. The Eriksen transformation operator is given by [5]

1 1 T2 Hp

where Hp is the Hamiltonian in the Dirac representation. A = +1 and —1 for the positive-

energy and negative-energy solutions, respectively. It is important that |3
M=1, [BAN3]=0 (I11.12)
and the operator S\ + A( is even:

8, (BA + AB)] = 0. (IIL.13)

Any even operator is block-diagonal and does not mix the upper and lower components
of the wave function.

The validity of the Eriksen transformation has been argued in Ref. [6]. It has been shown
that the Eriksen transformation directly leads to the FW representation. We can give an
additional argument which follows from the fact that the use of Eqs. ([IL12),([[ILI3) reduces
transformation operator ([ILII) to the form

Ug = (24 BA+AB)7Y2(1 + BA). (111.14)

Since two factors in the right hand side of Eq. ([IL14) commutate and the first factor defines
an even operator, an action of Ug on any eigenfunction of the Dirac Hamiltonian nullifies
either the lower spinor or the upper one. Eq. ([ILI4) can also be transformed to the form
1 A
Uy = P . (111.15)
VL + BN+ BN

The Eriksen operator brings the Dirac wave function and the Dirac Hamiltonian to the

FW representation in one step. However, it is difficult to use the Eriksen method because
the general final formula is very cumbersome and contains roots of Dirac matrix operators.

Another direct way to obtain the FW transformation has been proposed in Ref. [7] (see
also overview [8]). The transformation operator Upy and the relativistic Hamiltonian H gy
(IIL1)), obtained for the general case with arbitrary external boson field as a power series in

coupling constant ¢, have the following form:

Upw = Uo(1 + q01 + ¢*02 + ¢35 + . ..),

(I1L.16)
Hrw = BE+ qKi1 + ¢ Ky + ¢*K3 + ...



In expressions ([IL16]), Uy is the FW transformation operator for free Dirac particles defined
by Eq. (IL4) and ¢;, K; are some operators. The Hamiltonian #Hyy ([ILI6) can be used,
in particular, to consider field quantum theory issues [§].

Along with direct derivation of the block-diagonal Hamiltonians, there is a lot of step-
by-step methods to obtain Hamiltonians free of odd operators. In particular, one of such
methods has been used in the classical work by Foldy and Wouthuysen [1] to derive the
Hamilatonian H gy in the presence of an external electromagnetic field as a power series in
1/m. In the next section, we compare step-by-step and direct methods of transition to the

FW representation.

IV. COMPARISON OF DIRECT AND STEP-BY-STEP METHODS OF THE
FOLDY-WOUTHYUSEN TRANSFORMATION

The transformation of the Hamiltonian to a block-diagonal form may not be equivalent
to the FW transformation. There are infinitely many representations that differ from the
FW representation despite the block-diagonal form of the Hamiltonian [16]. As an example,
one can indicate the Eriksen-Kolsrud method [17] which variants have been used in Refs.
[18,119, 20, 21]. It has been proved in Ref. [16] (see also below) that these transformations
are not equivalent to the FW transformation. The same conclusion will be made for the
Melosh transformation [22].

One should draw special attention to the step-by-step method initially proposed in the
classical work by Foldy and Wouthuysen [1] and widely used in many applications. De Vries
and Jonker [6] and later the author of Ref. [7] have shown that the step-by-step removal
of odd operators being the main distinguishing feature of step-by-step methods does not
result in the FW representation. The Hamiltonians transformed to the FW representation
by the Eriksen method [3] and the method developed in Ref. [7] differ from the Hamilto-
nian obtained by the original FW method [1]. A reason is a noncommutativity of unitary

transformations [7, 8]. Formula (ITLI) can be re-written as

_ .a 71 .a
Hrw = Upw <HD — ’L§> UFW -I—Za.

Any unitary transformation operator can be presented in the exponential form

UFW = €ZS.
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For direct methods H, H]

Hpy = e <’HD — i%) e 4 z‘% (IV.1)
For step-by-step methods
Hpw = ...em P26 [ H ) — zg e eT T g 22 (IV.2)
ot ot

Hamiltonians (IV.1]), (IV.2) are equivalent only when

€ZS — 61(51+S2—|—...Sn+...) = ... ezSn . 6152€ZS1. (Iv3)

However, equality (IV.3]) is valid only for the trivial case of commuting S;’s. Such a situation
almost never takes place in applications.

According to the theorem of F. Haussdorft ],

1
exp A-exp B = exp <A + B+ §[A, B) + higher order commutators) #+exp B - exp A.
(IV.4)
The noncommutativity of unitary transformations leads to a dependence of the resulting

operator of the FW transformation
U=Upw =...U,...UU Uy (IV.5)

on a specific method of this transformation H, Q] This circumstance does not mean that the
exact FW representation cannot be reached in several steps. If the step-by-step transforma-
tion has been carried out with operator (IV.3), the Hamiltonian obtained can be brought
to the exact FW form with the unitary operator U’ = UgU™', where Uy is given by Eq.
(IIT11). Evidently, the exact FW representation needs one of the exact methods even in
this case.

It has been shown in Refs. E, H] that the original step-by-step transformation H] does
not exactly lead to the F'W representation. The same situation takes place for the methods
developed in Ref. [3, 4]. Thus, step-by-step methods are approximate and the exact FW
representation cannot be obtained with these methods.

However, step-by-step methods are rather helpful, when one can restrict oneself to several
leading orders of a FW Hamiltonian expansion in a chosen small parameter. As a rule, this

level of accuracy is quite sufficient, in particular, when one uses the weak field approximation



or the nonrelativistic one. Eqs. ([V.2),([V.4)) show that a difference between Hamiltonians
obtained by the exact and step-by-step methods is defined by the commutator [Si,Ss].
Therefore, this difference appears for the first time only for the third step.

For example, the expansion in powers of 1/m in the nonrelativistic approximation carried
out in Ref. [1] gives an accuracy up to 1/m? and can be restricted to S; and Sy. In this
case, €2e™1 ag 1179) gince [Sy, Sy] ~ 1/m?.

An essential advantage of the step-by-step methods consists in the relative simplicity of
computations they offer. On the contrary, the use of direct methods leads to cumbersome
derivations.

The differences between the FW Hamiltonians obtained by the direct and step-by-step
methods are beyond the weak field approximation and even beyond the leading terms of
expansion in the Planck constant. The latter statement is illustrated by the correspondence
between the quantum-mechanical motion equations obtained by the method proposed in
Ref. |4] and respective classical relativistic equations.

In addition to the aforesaid, any transformation that diagonalizes the Hamiltonian and
claims to enable the transition to the FW representation should be tested for the wave
function reduction condition. The formulation and proof of this condition is provided in the

next section.

V. CONNECTION BETWEEN WAVE FUNCTIONS IN THE DIRAC AND
FOLDY-WOUTHYUSEN REPRESENTATIONS. PROOF OF THE WAVE FUNC-
TION REDUCTION CONDITION FOR THE FOLDY-WOUTHYUSEN TRANS-
FORMATION

Diagonalization of the Hamiltonian relative to the upper and lower components of the
wave function tp(z) is the necessary condition for the transformation from the Dirac rep-
resentation to the FW representation (the FW transformation).

The second condition for the FW transformation consists in the nullification of either

upper or lower components of the bispinor wave function

'I,/}D(Cl?,t) =A



and the transformation of the normalization operator of the wave function ¢p(z) into the
unit operator. Let us call this the “wave function reduction condition”. For the case when
the Dirac Hamiltonian is independent of time (the free case or the case of static external

fields) this condition can be represented in the following form

w(%—)(m t) _ e—z’EtA+ ¢(+)(a:) . w(%—) (:B t) _ ikt ¢(+)(w)
v XM () e 0 ’
(7)( ) . (V.1)
-) _im ¢ (@ (-) _mt
vy (x,t) =eTAL X(_)(az) — Yy (x, 1) =€ X(_)(az)

In this equation, E is the module of the particle energy operator; A, and A_ are normaliza-
tion operators, which may differ, in general, for solutions with positive and negative energies.
Definition of the operators A, and A_ implies that the wave functions w(D+)(:c, t), w(Df)(a:, t)

and the spinors ¢P)(z), x{7)(x) are normalized to 1:

[ @0 @oav =1 [ 6 @@ =1 [ X en@a -1

Pluses and minuses denote positive and negative energy states, respectively.

For a free particle,

E = /m? + p?, A+:A_:\/E2+m. (V.2)

o (x) = e®P®¢ and 7 (x) = e Py for the positive and negative energy solutions,
respectively. ¢ and y are the two-component Pauli spin functions [see Eq. ([IL6])].

Functions w(Di)(a:, t) and 1&%%,(:1:, t) are the appropriate solutions of the initial Dirac equa-
tion and the equation transformed to the FW representation for a free particle and a particle
moving in static external fields. The reduction condition implies transformation of the Dirac
wave functions to the form w%ive,(a:, t) with the unit normalization operator.

In general, the Dirac and FW Hamiltonians depend on time. In this case, the reduction
condition (V.I)) has the same meaning. We use expansions in the Dirac equation solutions
obtained either for free motion of particles, or for a motion in the presence of static external
fields when solving specific problems of physics (at least, with the use of the perturbation
theory).

The reduction condition can be proved with the Eriksen transformation [5], which is the

exact FW transformation of the time-independent Hamiltonian H,. Let us consider the
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positive energy solutions. Since Mpgt)(a:, t) = :I:ngt)(a:, t), Eriksen transformation operator
(IIT.14)) transforms the Dirac wave function to the form
()

1 —1/2 ¢(
+t3 (BA+ /\ﬁ)] A, . : (V.3)

. 1
st == |

The wave function normalization requirement can be written as

t i 1 1 !
/ Ui (@, ) (@, 0)dV = / o (@) Ay [5 +7(BA+ Aﬁ)} A (@)dV = 1.
(V.4)
Eq. (V.4) is valid only when the following condition is satisfied:

Al E + i (BA + /\ﬁ)] i Ay =1. (V.5)

Multiplying the left-hand and right-hand sides of equation (V.3) by the operator A" and

extracting a root square results in

11 -1/2 71
[5 + 7 (A + )\6)] — A
and
11 1/2
A, = [5 + 7 (BA+ )\6)] . (V.6)

Eqgs. (V.3),[V.6) prove the reduction condition (V.I). An explicit form of the operator A
has been determined in Ref. [9] in the particular case when the FW transformation is exact.
Similar derivation proves Eq. (V.I]) for the negative energy solutions. In this case
1 1 1/2
A=A, = [5 + 1 (BA+ )\6)] . (V.7)

VI. VERIFICATION OF METHODS OF THE FOLDY-WOUTHUYSEN TRANS-
FORMATION

The reduction condition can be successfully used for the verification of methods of the
Foldy-Wouthuysen transformation. The validity of the Eriksen method [5] has been proved
in the precedent section. Next subsection is devoted to the method proposed in Ref. [7] and

discussed in Ref. [8].
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A. Particle in a static electric field

For a particle in a static electric field, we can demonstrate that the condition ([V.1))
is satisfied up to linear terms on e and quadratic terms on v/c in the expansion of Upy,
in powers of charge e [7]. This procedure can, apparently, be applied up to any order of
expansion on e and v/c using the mathematical technique of Ref. [7].

We obtain with denotations used in [7] and within the accepted accuracy that

Hp =pm+a-p+edy(x),

2 .
B 0 cenrr Ba-p p ie
Upw = (1400 +0)l =1+ 2m _8m2_4m2(a.VA0)

—fﬂ (e p)(ex- V) — (e Vo) )],
Hrw = BE, E=m+ {A0+— a-p)la-VA) — (a-VAO)(a-p)]},
o (e —“ft{l L o P V)

¢ ()
—(o - VAy)(o - p) } <2m zeo;lmVQAg>¢+)(w) ;
()
'I,/Jg;;%/(w, t) = UFW'Q/}(DH(wa t) =e ’ (:B) )
0
o5 =1 - L o ) V)
(o p_zeO'-VA(]) ) ()
(o VAN p)} [ \om ) ,
X7 ()
'I,/J%;,%/(w,t) = UFWZb(Di)(w:t) = ’
X ()

(VL.1)
In Eq. (VLI), p and functions of p imply the corresponding operators; ¢(+)(:c) and

X7 (x) are two-component spinors.

It follows from (VL) that reduction condition (V.I) is satisfied and, therefore, the ob-

tained unitary transformation is the F'W one.

The method described in Refs. [7, 8] can also be checked by means of its comparing with
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the Eriksen method [5]. In the case considered (see Ref. [24])

Hp _Bm+a-p_1
VH3 Do 2

po = /m?+p?,  poBB+ Bpyg = —2eAq.

A\ =

1 1
B+ s—(fm+a-p)B(Bm+a-p)—,
2po Po

Since

eAy | e(p§Ao+ Aopp)
_|_
m 2m3

B=—-

to within terms of order of p?/m?, then

: 2y ~
A= P gl gag s e VA (@ p) (e p)(a A

m 27711/22 2m ,
BA+AL T\ T P ife
(T + 5) =1+ Y + ™ [(a-p)(a-VA)) — (a-VAy)(a-p)],
., Pa-p P’ ie iBe
Up=1+ o sz 2 VA 63 [(a-p)(a-VA)) — (a-VAg)(a-p)].

The latter expression for Ug coincides with the expression (VLI]) for the FW transfor-
mation operator Upy, obtained by the method described in Refs. |7, 8].

B. Super-algebra in the Dirac equation with static external fields

In Ref. [15], supersymmetric quantum mechanics was applied to a wide range of inter-
actions between a Dirac particle and external static fields that provides a closed form of a
block-diagonal Hamiltonian. The authors of Ref. [15] considered the SU(2) transformation
of the Dirac Hamiltonian as the FW transformation.

It is interesting to determine whether reduction condition (V.I)) is satisfied for this trans-

formation. Using denotations from [15], we have
Hp=Q+Q" +A, (V12)

where A is a Hermitian operator, @ and Q' are two fermion operators satisfying the following

requirements:
Q*=0Q" =0, {@.A}={Q".A}=0. (VL3)
{...,...} denotes an anticommutator.
Then, the Hermitian operators of SU(2) algebra are introduced as follows:

Q+Q!  —iAQ+ Q) A

" agean T Ay BT e ekl =i
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The transformation operator is

0 / +QY) /1
Upw = 1J20—COS—+2ZJQSIH— (14 cosf)+ AQ{g Q?} 72 5 (1 —cosf). (VL.4)

In contrast to Ref. [15], the exponent of iJ,0 in Eq. (VI4) is taken with the positive sign.

This is a necessary step to be in agreement with the reduction condition (V.I]) (see below).

Since

Hiew = ' Hpe™20 = (Q + Q") cos 0 + 2iJyAsin 6 + A cos 0 + 2iJy(Q + Q") sind (VL5)

and
sinf = {Q Q" cosf = (%)% tanf = Q.07 7 Qp
({Q, Q1) + A2/ ({Q,QT} + A2 (AZ)i/z 7
expression (VLI) is reduced to the diagonal form
A + 2\ 1/2
Hew = i (10.@1) +42)7. (VL6)
If
00 ; 0 Mf
A=pm, Q= ., Q= (VL.7)
MO 00
and

M=0’-(p-|—C)—iC'5, Ci:Ai—iSi, i:1,2,3,5,

the Dirac Hamiltonian Hp is given by
Hp =pm+a-m+ifysms, m =p+ Ai(x)+ifei(x), i=1,2,3,5, ps=0. (VL)

The following interactions are described using these denotations: i) A; is the pseudo-scalar
potential, ii) 5 is the time component of the axial-vector potential, iii) € is the “electrical”
component of interaction of the anomalous magnetic moment of the particle, iv) A is the
minimum magnetic interaction; v) if A; =0, 5 =0, A =0, € = r, the Hamiltonian #
reduces to the Hamiltonian of the Dirac oscillator. All of the above interactions admit a
closed transformation to the diagonal form (VLG).

Let us check whether the SU(2) transformation (VI.4]) satisfies the reduction condition

14



(V1)) and is the FW transformation. In the case defined by Eq. (VL7),

MM + m? 0

Hrw = E = B{Q, Q"+ m*)'?,  E* ={Q,Q'} +m* =
0 MM+ m?

_JEAm Q4+ Q"
Urw = 2F {1+ E+m ]’

(+) (+)

Qp(D—H (w7 t) _iEt E + m 1 ¢ (w) 7 ’Lp%—;?/(a% t) — e_iEt ¢ (w) 7
2F M¢(+)(a:) 0

E -li m
i [E+m [~ MIX ) () _ Z 0
op (e t) =B == | B R I
X (@) X(z)
(V1.9)

Expressions (VLI) show that, indeed, the reduction condition (V1)) is fulfilled for SU(2)
transformation [15] (with the changed sign in the exponential factor iJo6). Thus, this is a
FW transformation. If the authors’ sign in this factor [15] remains unchanged (e=*/2%), the

transformation operator Upy, in Eq. (VL) takes the form

_JE+m pQ+ Q")
U= 2F [1_ E+m ]

In this case, the reduction condition (V.I)) is violated despite the block-diagonalization of

the Hamiltonian.

C. Eriksen-Kolsrud transformation

The Eriksen-Kolsrud (EK) transformation [17] was used in many works (see, e.g., Refs.
[18, 119, 20, 21, 25]). It is fulfilled in two stages defined by the operators U; and Us. The
unitary operator of resulting transformation is given by [17]

1
Upg = U Uy, U, = ﬁ(l—FJ)\), Uy =

. Hp
J:Z’Y55, A= W

(1+8J),

Sl -

(VI.10)

There are many examples of the exact EK transformation. It is often claimed that this
transformation is equivalent to the FW one. It has been proved in Ref. [16] that this

statement is incorrect. We can show that the EK transformation does not satisfy reduction

condition (V.1J).

15



For a free particle, Hgx = SE and

10-P
L [E+m <1 + > o) ()

1/’5;1%(5'3; t) = UEK¢(D+)(CB,t) =e S E E+m ,
0
(VL11)
0
- i E+m
wj(Elz(mat):eEt ZO'p B
2F 1— ()
E+m

It can be seen from Eq. (VLII) that Eq. (V.I) is not satisfied and one needs to perform

additional transformation [16]

(VI.12)

Uksrw = 5 E+m

E+m (1_ z’ﬂa-p)

which does not change the form of the Hamiltonian (Hgx = Hprw).
Let us consider a Dirac particle in an external gravitational field defined by the static

metric ds* = V?(x)(dz")* — W*(x)dz*. This problem was investigated in Refs. [16, 18, 19,

20]. In the considered case, the EK transformation is exact [18, [19].

The Dirac Hamiltonian is given by [18, [19]

1 V

Similarly to Refs. [16, [18, 19], we take into account the first-order terms for the potentials
(V —1), (F — 1) and their first-order spatial derivatives. We use the method proposed in
Refs. |7, 18]. We perform the expansion in a power series in |p|/m and take into account
terms up to p*/m?.

In this case

. 2
or P L v)a )

(F=V)p*+2a-p(F-V)a-p+p(F-V)]

UFW =1+
o
T 16m?

and

51) B 2 _ ﬁ 2 —
e = b+ g+ Il —1)—m{ﬂp,<v Dh+gn W F=DF

28 (@ xP)+V ¢l + -2 (F xp)+ V- f].

&m

where ¢ = VV, f = VF. Eq. (VL14) coincides with the corresponding equation obtained
in Ref. [16].
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It can be shown that the FW wave functions satisfy Eq. (V.I). The EK transformation

operator can be written as

1 Bs 1 s ! ! :
Upx — 5{1+ws,——{2 P.F} v ot (WPQHWW) v (VL15)
S E (P xp) VSl s s ’“Z"”}(l_”5)'

The EK wave functions are given by

(@, 1) = e {1 _r

i 1 1 o) ()
E P Ay T "’} 0 )
| 2 1
65 (@) ezEt{l_S%_wmQ (F=V)pP?+25 - p(F=V)E-p+p*(F - V)]

(VI.16)
In Eq. (VLI6), E is the module of the Dirac particle energy in the external gravitational
field which Hamiltonian is defined by Eq. (VLI3].

Thus, reduction condition (V.I)) is not satisfied for the EK wave functions. This conclusion
remains valid for the EK transformation performed in Ref. [21] for Dirac particles interacting
with a plane gravitational wave and a constant uniform magnetic field.

A closed transformation of the EK type was applied in Ref. [20] to Hamiltonian (VL.I3)
using the supersymmetric quantum mechanics methods. The resultant Hamiltonian coin-
cides with the transformed one obtained in Refs. [18, [19] in any order of the expansion in
powers of 1/m.

The transformation operator used in Ref. [20] is

_— ? € —1 Zla- ivsPm
U= 75 (1450 ) 50—k Q=jglacp.F)tipuV. (V11D

Expanding Eq. (VLIT7) in a series up to the terms of the first order in the potentials (V —1),
(F —1) and their first spatial derivatives and taking into account only terms up to ~ 1/m?,
one can prove that formulas (VILI3) and (VILIT) for the transformation operator coincide
within the accepted accuracy. Similarly to the transformation applied in Ref. [18], reduction

condition (V.I)) is not satisfied. Hence, the transformation constructed in Ref. [20] is not

the FW one.
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D. Generalized Melosh transformation

The Melosh transformation [22] is often used in the strong interaction theory. It has been
independently proposed by Tsai [26] to describe interactions of particles with spins 1/2 and
1 with the magnetic field. For free particles, the exponential operator transforming Dirac

Hamiltonian ([IL3)) is given by [26]

1
U; = exp <—§ arctan - pl) . DL =Dy€s+Dyey. (VI.18)

This transformation operator can be expressed in the equivalent form

U1:6+m+7'pl, e=4/m?+p3. (VL.19)
2e(e+m)

The transformed Hamiltonian is |22, 126]

This Hamiltonian is not block-diagonal. To bring it to the block-diagonal form, one can
perform the second transformation. Since the form of Hamiltonian (VI.20) is covered by the
condition of exact FW transformation (IIL9), the second transformation operator is equal

to

E zI7Z
U, = —;15(27 p), E=\@5p2=\/m+p’ (VL.21)
V4 +e€

The resultant transformation operator is given by
It brings initial Dirac Hamiltonian ([IL3]) to the form

Hy = Bvm? +p? = SE. (VI.23)

Despite the block-diagonality of generalized Melosh transformation (VI.22), it is not equiv-
alent to the F'W one. The connection between the generalized Melosh transformation and

the FW one is given by

VEFTITm) +iv/E= e~ mk
2¢(E 4+ m)
V(E+e)(e+m)—iy/(E—e€)(e—m)R R POy = PyOu

2¢(E +m) ’ NET
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The wave functions in the generalized Melosh representation are equal to

P (1) = UagP . 1) = 80 EF It m) — 1E = e —m)R [ (@)

b

2¢(E +m) 0
g 1) = Ut () — it VE+e+m) —iy/(E—e)(e—m)R 0
Var (@, 1) = Untp (@, ) = 2e(E + m) (@)
(V1.25)

Therefore, these wave functions do not satisfy reduction condition (V).

VII. APPLICATIONS OF CONNECTION BETWEEN THE DIRAC AND
FOLDY-WOUTHUYSEN WAVE FUNCTIONS

The Hamiltonian for relativistic particles in the FW representation contains a square
root of operators (see Refs. [1, 13]). Therefore, the Dirac representation is usually more
convenient than the FW one for finding wave eigenfunctions and eigenvalues of the Hamilton
operator. Many exact solutions of relativistic wave equations have been found just in the
Dirac representation [27]. Nevertheless, a derivation of equations of motion is much more
difficult in this representation than in the FW one [2, 3].

The use of connection between wave functions in the Dirac and FW representations
defined by Eq. ([V.I) is very important. One can calculate wave eigenfunctions in the
Dirac representation and then obtain corresponding eigenfunctions in the FW representation.
After that, one can determine expectation values of needed operators corresponding to
certain classical quantities and derive quantum and semiclassical equations of motion. When
the semiclassical approximation is not admissible, quantum formulae describing the evolution
of the operators can be derived. Semiclassical evolution of classical quantities corresponding
to these operators can be obtained by averaging the operators in the solutions. An example
of such an evolution is time dependence of average energy and momentum in a two-level
system. Another example is the spin dynamics in external fields. It is very difficult to solve
these problems in the Dirac representation. It is important that Eq. (V.I)) is exact because
one can solve the above mentioned problems with any desirable accuracy. The example of
description of spin evolution in the FW representation has been given in Ref. [9].

In the Dirac representation, the connection between operators and classical quantities

is rather complicated and sometimes not clear. Explicit expressions for the operators that
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correspond to certain classical quantities are known only for free relativistic particles (see.
[1]). It is clear that the expressions for these operators in the general case must depend
on the parameters that characterize the external field. The FW transformation if free of
this drawback. Main operators including the operators of position, momentum, and spin
have the same form as in the nonrelativistic quantum theory. The determination of the
FW wave function allows calculating, e.g., expectation values of operators of the root-mean-
square radius /(r?), electric and magnetic dipole moments, kinetic energy and so on. In
particular, the operators of the electric and magnetic dipole moments are equal to OH py /OE
and OHpw /OB, respectively. The use of the FW representation for this purpose can be

effective not only in the atomic physics but also in the nuclear and particle physics.

VIII. SUMMARY

The paper formulates and proves the conditions enabling the transition from the Dirac
representation to the FW one. An exact correlation between wave functions in both rep-
resentations has been established. It has been demonstrated that the block-diagonalization
of the Hamiltonian is often insufficient (see Refs. [18, 119, 20, 21, 22]) for its transforma-
tion to the FW representation. Such a transformation becomes possible, if the reduction
condition (V.I) is satisfied. The results obtained enable unambiguous transition to the FW
transformation and calculation of matrix elements and expectation values of the operators
that correspond to the major classical quantities. It is possible because the exact form of
such operators in the FW representation — as opposed to the Dirac representation — can be

established quite easily.
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