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Abstract: In our paper we consider the previous [1], {2] models. The problems of observation
are formulated for similar models [3}. Those problems are ciosely adjoined to pattern recogni-
tion. In paper {i] we describe an algorithm to construct a numerical optimal program and feed-
back contrels in pulse functions class, in paper [2] - in measurable functions class conse-
quently. Now we present results of numerical experience in MatLab 6 to all algorithms [1], [2]
that constructs program and feedback optimal controls in a class of puise and measurable func-
tions. We make some conclusion about process of numerica! solution.

Problem formulation
We consider the following parabolic system under uncertain measurable function

@), teT =[to,r‘]with no probabilistic information available and boundary controls
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real coefficients A(z,x), B(t, x).C(¢,x) are functions under restrictions [4], that provides
an existence of system solutions in generalized sense. The components of PDE system (1)
— system state @ (¢,x) ,(f,x)e Q=[x,, x*]}x[f5.*]. boundary conirols u(s),7€T,
perturbation function @ (¢),feT - are also constrained:

Where | o@(t.x}= (f (A- )+B-g¢+C’¢, xe(xy,x*) is PDE operator and its
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So, the following feedback optimal control problem is considered in initial formulation

(P):
(P) maximize J(u) = j:'(u (@ (1, x*))dr = J:'u (t)di

subject to (1) — (4).
Following our papers [1, 2] instead of constraints (3), that are too difficult to nu-
merical realization, we firstly consider constraints
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P X =by st ety M), keK={ks, ko, k'} (5
to fixed points 7 ; €(1,,1*); ke K. So, instead of problem (P), now we consider the fol-
lowing feedback optimal control problem (P{):

(P1) maximize J(u) = j:‘u (¢)dt

subject to (1), (3) - (5).

Note, that we constructed {1}, {2} a numerical algorithms to program and feedback
controls, which has been developed initially to ODE [3] and then generalized by us to POE
{1,2,5].

We present a of numerical experiment results of solving problem (P1) in pulse
functions class (using discretization the initial PDE (1)). We also present a of numerical
experiment results of solving problem (P1) in measurabie functions class (without of dig-
itization the initial PDE (1)). The suggested methods [1], [2} was programmed in MatLab
6.0 language. Calculations were executed by using computer P III - 500. To obtain the nu-
merical solution to the differential system (2), (4) an iterative process to the four points
scheme for nonzero elements was used.

Numerical experiences of contraction a program optimal control in pulse
and measurable function class.

Below we publish two tables that contain the results of numerical experiment for
two methods. The first table contains a statistics for a method of construction of optimal
program controls in pulse function class (discretization) [1]. The second table contains a
statistics for 2 method of construction of optimal program controls in measurable function
class [2] (without discretization).

Dual method with long step | Direct method with long step
h dim [k{ n | 8/%
int ting, % t int tim, % T
0.5 507 |31 20 24 7 Ti 0.84 7 74.1 (.89
02 | 1824 (3] 506 | 25.7 13 74.83 2.63 19 80.6 2.70
0.05} 9525 [3(200]| 29 35 95 46.52 23 94.9 46.55
0.02 35187 )3 ;500 30 67 97 690.3 69 98 695.7

Table 1 Construction of program optimal controls in pulse function class.
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h k n AJC , % 1 t I tn . %
05 13| 20 3 11 084 | 0.05 6
0.2 |3 50 2.3 11263 | 0059, 22

0.05 3200 3.1 114652 0.07 | 0.15
0.02 3 {500 29 116903 0.09 | 0.0]

Table 2 Construction of program optimal controls in measurable function class

Here: h — a step of time discretization, dim — dimension of matrix to integrate con-
jugate differential systems, k — a number of check peint (a number of problem state restric-
tions), n — a number of time steps, aJ - functional increment (to functional initial value),
int — a number of conjugate differential systems integration, tyy — 2 common time of conju-
gate differential systems integration ( in percents to common solution time of optimization
problem), t — a common solution time of optimization problem (in seconds), I — a number
of Newton methods iterations to solve a nonlinear equations system, ty — a solution time of
Newton methods, AJC — functional increase (in percents to functional optimal value in a

case of discretization).

Numerical experiences of construction a feedback optimal control in
pulse and measurable function class.

Below we publish two tables that contain the results of numerical experiment for
two methods. The first table contains a statistics for a method of construction of optimal
feedback controls in pulse function class (discretization) {1]. The second table contains a
statistics for a method of construction of optimal feedback controls in measurable function
class [2] (without discretization). Limits of disturbances function @ (¢) do not more than

two percent to maximum control value u(r) .

Dual method with long step | Direct method with long step
h [dim |[k{ n | A%
tmax int tint, Y0 trax Int tine, Yo
0.5 507 [3|20] 23 0.9 4.7 77 0.91 5.1 74
0.2 | 1824 |3} 50 | 26.7 2.74 3.3 76.8 2.7 11 86
0.05| 9525 31200 27 48.53 20.1 9.6 | 48.64 15.3 95.8

Table 3 Construction of feedback optimal controls in pulse function class

h k[ n AJ(; % I [ tem | tm | tNm. %0
05 3| 20 1.2 1 {08 0.01 1.25
02 13| 50 13 1 |t.1 (0012 1

0053200 1.19 111560015 0.1

Table 4 Construction of feedback optimal controls in measurable function class
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Here: h — a step of time discretization, dim — dimension of matnx to integrate con-
jugate differential systems, k — a number of check point (a number of problem state restric-
tions), n — a number of time steps, AJ - a functional increment (to functional initial value),
tmax — 8 maximum time to construct feedback control during one step, int — a middle num-
ber of conjugate differential systems integration, ty,— a common time of conjugate differ-
ential systems integration (in percents to common solution time of optimization problem),
AJC - functional increase (in percents to functional optimal value in a case of discretiza-

tion), Iy — a middle number of Newion methods iterations to solve a nonlinear equations
system, t; , — a middle time to construct feedback control, tn , — a middle solutions time
of Newton method.

Some remarks on results of numerical experience.

Notice the following interesting aspects during optimal control probiem caiculation
process. Almost all of that aspects are stmilar on marked in our paper [5] effects.
Remark 1. If we investigate an optimal control problem in a class of pulse functions we can
see, that an increment of control problem quality criteria aJ is not large in comparison
with initial vaiue.
Remark 2. Studying a problem in a class of measurable functions (without discretization)
does not give an essential increment of quality criteria in comparison with a class of pulse
functions (without discretization). Thus complexity of optimal control problem qualita-
tively grows.
Remark 3. The statistic data presented in the table give us a reason to make a conclusion
that the main resources of computer during solving process are used for numerical integra-
tion of differential systems solution.
Remark 4. A time for integration conjugate differential system very quickly grow with in-
crease of problems dimension. Therefore for the large dimensions problem the process of
optimal feedback controls construction in a mode of real time is difficult.
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