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Abstract. The linear Kalman-Filter with appropriate modifications is introduced to solve the
task of reconstruction of multiphase flow in pipes. The grey level histogram thresholding seg-
mentation described here was adopted to these images and applied as an altemmative way of re-
constructed image quantization by simple step-function.

Introduction

Multi-phase flow exists in many industrial processes. The distribution of phases in
the flow carries significant information about the process. However, a multi-phase flow,
like a flow of oil, water and gas in a pipeline system, is extremely complex. A wide range
of flow patterns is formed that are determined by the relative mass and/or volume ratio of
the single phases as well as by the relative velocity of each phase relative to the others.

Flow pattern identification in multi-phase flow is commonly interpreted as a pattern
recognition task having a cross-section image of the flow reconstructed from available pro-
jection data. Different techniques are applied to gain the projection data like electrical ca-
pacitive measurements, ultrasonics, and X-ray techniques. An introduction to the problem
of multi-phase flows can be found in [1]. However, the underiying identification problem
is a monitoring task, i.e. the dynamics of the flow has to be described. Hence, the flow pat-
tern recognition is a typical process tomography task (compare [2,3]). Process tomography
can be applied to many types of processes and unit operations, including pipelines, stirred
reactors, fluidized beds, mixers, and separators. Depending on the sensing mechanisin
used, it is non-invasive, inert and non-ionizing. It is therefore applicable in the processing
of raw materials and materials degradation, in large-scale and intermediate chemical pro-
duction, and in the food and biotechnology areas. State of the art systems for process to-
mography use multi-channel data acquisition to receive a set snapshot projections of the
flow pattern combined with standard reconstruction algorithms like back-projection tech-
niques. Every reconstructed slice or cross-section image is assumed to be static and corre-
lations between the slices are neglected, i.e. every slice reconstruction is independent from
the previous results.

This paper presents a Kalman filter approach adopted to non-linear phenomena 1o
overcome the above restrictions. The average velocity distribution together with the corre-
sponding covariance matrix of the liquid flow through a pipe serves as prior information in
statistical sense. To overcome the non-linearity in the process model as well as in the
measurement model the statistical linearization technique is applied. It turns out that the
resulting reconstruction or filter algorithm is recursive, i.c. yielding the quasi-optimal solu-
tion to the formulated inverse problem at every reconstruction step by successively count-
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ing for the new information coilected in the projections. The applicability of the developed
algorithm is discussed in terms of characterizing or monitoring a multi-phase flow in a
pipe. To separate the phases of the flow, two strategies arec presented. The first separates
the phases by evaluating the maximum expectation assigned to a volume element. The sec-
ond is based on an unsupervised segmentation algorithm adapted to the problem of separa-
tion of uniform regions in a gray value image. The resuits of both algorithms are discussed.

Kalman filter approach for image reconstruction

The problem of determining characteristics of multilevel (muitiphase) objects is
very important in the practice. It has many applications, for example, in o1l and chemical
industry. This problem is investigated since the 80-th. Many algorithms, devices, and sys-
tems were developed and are in practical use nowadays.

Within the framework of this problem the task of reconstruction of a cross section
of a multiphase object is to be mentioned. It's solution can be either a finite goal, or an in-
termediate step for solving a more concrete task, e.g. determining the structure of a multi-
phase object or calculating the percentage of each phase.

Here a technique for solving this task is introduced for multiphase flow in pipes.
The technique is based on the Statistical Estimation Theory. The cross section image is
considered as a random dynamic field. In case of linear dynamic images (i.e. images that
can be described by a linear process model), the well-known linear Kalman-Filter algo-
rithm gives the optimal solution of the reconstruction/estimation problem. Multiphase ob-
jects cannot be described by means of a linear process model. An attempt to solve the
problem in terms of nonlinear equations leads to comprehensive description of it in
mathematical form and to huge numerical expenses. It cannot be performed in practice.
Therefore, one approach to avoid this problem is to find a suitable linear approximation of
the original image and to use existing linear reconstruction algorithms. For such an ap-
proximation the statistical linearization technique [3] is applied. Hence, the linear Kalman-
Filter with appropriate modifications can be used to solve the reconstruction task. The
mathematical image model is divided into two steps in this case: the nonlinear image is
represented as a nonlinear transformation of a linear process model. As a result a linear
image is obtained from the Kalman-Filter reconstruction, which has to be finally trans-
formed into the nonlinear one. For multilevel images, like a muitiphase flow, a step func-
tion is used for such transformation. The parameters of this function are chosen according
to the prior statistical information in such a way, that the pre-defined probability distribu-
tion of the nonlinear image is obtained.

One example, using simulated data, is represented in the following [4]. A particular
case of multiphase object, the 3-phase flow through a pipe is considered. The projections
of the pipe are gained by X-Ray projection radiography using a standard CT acquisition
setup. The tomographic system consists of a X-Ray point source and a line detector (see
fig.1). The time scale is discretized. The tomographic system moves around the pipe and
gives a new set of projections of the current cross section of the flow at every time.
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Fig.1 The tomographic system

Original images of the flow are obtained from the two-steps mathematical model
described by two equations: (¥) The recursive linear equation

Xy = A x, + Bw, (1)

gives the linear images with gaussian distribution. Here A4, is an image model matrix that
determines the correlation time (statistical time-characteristic) of the image and the de-
pendencies between different image pixels. The matrix B determines the correlation be-
tween the image pixels (statistical space-characteristic). Finally w, is a white Gaussian
distributed noise with zero mean value and unity standard deviation.

The linear images obtained in such a way are then transformed into 3-phase nonlin-
ear images with the step function

( 1
0, Xy <y

Y (x:'k ) = y(z), x;'{kl} X < x.gtz) (2
y(”, X, 2 xff)
The pre-defined distribution of 3-phase image (known from a priori information
about the flow) is obtained by choosing the thresholds x” and x{”. The values y", y*¥,

and y® depend on the concrete flow (i.e. the physical properties of materials) and on the
tomographic system. They describe the attenuation coefficients of corresponding phases. It
has to be mentioned here, that y, (x, ) is a function of the time %, the pixel value, i.e. the

brightness, x,, and the pixel index 7. This transformation can be divided into two opera-
tions convenient for practical use yielding a simplified mathematical representation. Due to
the introduced mathematical model the image x has a zero mean value. In the first step, a
mathematical expectation known from a priori information is added to the linear image x
to form different flow regimes, e.g. wavy flow, annular flow, and churn flow. In the second
step, the result is transformed by a step function, which depends only on the time and the
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image value, and does not depend on the pixel index. The examples of image realizations
at different discrete times are shown in fig.2 for the annular flow.

The reconstruction algorithm, based on the Kalman-Filter, processes the projections
obtained from these simulated images. The linear images obtained as a result of the Kal-
man filter reconstruction are shown in fig.3.

k=100 k=105 k=110

Fig.2 Simulated 3-phase images

k=100 k=105 k=110

Fig. 3 The result of Kalman-filter algorithm

Image quantization

The resulted images obtained after application of Kalman-filter algorithm are trans-
formed into 3-phase images, which are concerned as the final resuits of the reconstruction.
This nonlinear transformation is also performed by a step function. This function, however,
depends on the time and the pixel value, but does not depend on the pixel index. It has a
structure similar to the function given by eq.(2). The reconstruction resuits, obtained with
the step function approach are shown in fig.4.This approach also allows using other seg-
mentation algorithms instead of step function to obtain a multiphase image.

The use of another segmentation algorithm at the last step as an alternative to the

k=100 k=105 k=110

Fig.4 Reconstruction results
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simple step function approach is discussed below. In this case it is necessary to find inten-
sity intervals of each phase and to give its brightness estimation. Therefore the most suit-
able way here is a gray level thresholding, which can be viewed as a classification problem
of pixels ascription to different phases (segments) of oil, air and water. Phases can be rep-
resented in different combination and overall number of segments (in terms of image proc-
essing) can vary from 1 to 3. That why the segmentation approach proposed here is divided
into two steps. The first step is posterize the image approximating to necessary decomposi-
tion and the second one finally segments an image.

Intensity unsupervised segmentation (automatic threshold finding). There are
many of grey level segmentation techniques already developed and described in literature
[5] but neither of these methods is universal and there is no general solution of the image
segmentation problem to get satisfactory results for all types of images. If the image is
composed of regions with different grey level ranges, i.e. the regions are distinct, the histo-
gram of the image usually shows different peaks, and each corresponding to one region
and adjacent peaks are likely to be separated by a valley. However, to find the optimal val-
leys or regions by thresholds is not a trivial job. Hence, the first step described here is only
an estimated pre-segmentation called posterization.

The proposed algorithm is based on finding stepwise significant minima in the
smoothed intensity histogram A

(n=1)/2
h(i+q)
B (f) = 2 ,i=1{0,1,..,255} n={3,57,..} (3)
n

taking into consideration n neighbors. To find the significant minima in the histogram the
depth of neighboring valleys are compared. First, all minima my in the smoothed histogram
# are determined. Then the significant minima m are selected among all minima

my = |, D) | 1 () < B (1 £1),1 5§ <254}

. 4)

m={(m, b (m)) | 1 (m,) < I (m,,,),m, € my}
As result of the intensity segmentation, which is called pre-segmentation step, an image is
obtained, posterized on minimum suitable intensity levels (see Fig 5a),

The first step results in the set of J uniform regions with some intensity decomposi-

tion {po=0, p1, P2, --., P11, pr=255}, where py is the interval [my, m;] in the original inten-
sity histogram.
N-Region segmentation. The goal of this processing step is to separate the N<J regions
from the posterized pre-segmented image. The well known Otsu algorithm [6), is applied
to find a threshold on the local histograms defined as the region between significant
neighboring peaks in the main histogram.

Since the pre-segmented image may contain more than N regions (here N=3),
maximum N peaks from the histogram of the pre-segmented image are under considera-
tion. As a result of the pre-segmentation step, J intervals [m;, mi] (i=1,...,J) have been
found defining J maxima. Before running the Otsu algorithm to separate the regions, the N
largest maxima among all found peaks are selected. For the segmentation a bi-level thresh-
olding is performed on every of the N-1 local histogram build between each pair of peaks.
The pixels there are divided into two classes: C1 with gray levels [0, ..., f] and C2 with
gray levels [r+1, ..., 255]. According to the Otsu algorithm the between-class variance of

101



(a) (b)

Fig 5 Segmentation results:
(a) pre-segmentation (posterized on minimum levels); (b) final segmentation result

the thresholded histogram is defined and the ratio between the class vartance and the local
variance is maximized to find an optimal threshold ¢.

As result of this step, the selected N neighboring maxima are separated and the full
image is segmented into N regions (Fig. 5b).

Sequenced application of these procedures yields a quantized image with stretched
quantization thresholds, which are optimal for visualization. The overail number of phases
is introduced as a prior (one, two or three) for the current reconstructed image.

Conclusions

The result, given in Fig.5b, slightly deviates from the result obtained by the current
algorithm as described above (see Fig.3 for k=100). This difference does not appear in
other cases, especially on images of the flow if the current time exceeds the correlation
time of the dynamic process. It is expected to gain better results if available prior is addi-
tionally introduced to the algorithm like the location of phases at previous time counting
for the correlation properties of the monitored flow, which can be equivalently interpreted
as correlations in the 3D spatial domain. A combination of available algorithms can be
used to compose a new grayscale image segmentation approach in the framework of phase
separation in 2D or 3D spatiai domain.
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