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Abstract. The coronary ischemic disease is characterized by change of blood flow turbulence and,
as a result, by appearance of high-frequency sounds that are caused by stenosis of arteries, The
most informative part of this signal, which is used for diagnostics of the coronary ischemic disease,
is the diastole. In order to extract the diastole from the entire signal, the moments, which corre-
spond to the beginning and the end of a flap of the mitral valve damper, have to be determined.
These moments can be detected as change-points of probabilistic characteristics of the signal, espe-
cially, as change-points of the spectral density of the signat. A training sample is formed from the
extracted stationary fragments of the diastole for the healthy men and men with the coronary
ischemic disease. The training sample is used for construction of a decision rule. In the paper the
methed for segmentation of the blood flow signal based on a spectrai test for change-points detec-
tion is considered. The proposed decision rule is based on discriminant analysis of parameters of
autoregressive models, which describe stationary fragments of the diastole.

Segmentation of the blood flow signals

Consider a mathematical model of a change-point in a blood flow signal. Let
X,(t),teZ be a stationary signal with zero mean and the spectral density
S,(A)lde [-— Jr,zr], X,(r),t € Z be stationary signal independent from X (r) with zero mean
and the spectral density S,(A) that is different from S,(4) : S,(-) # 5,(-) . The registered signal
X= {x, Jb= f‘f} of length 7 has a change-point at an unknown time moment
t,e{r.,t_+1K ,7,,T +1} that means an abrupt change of a spectral density:

(Xt e sty -1},
= {Xz Ot € ftoto +1,.. T},

where 1 <7<z, <7 are limit values that are known a priory.

If 1, = T +1, then the signal x, = X|(¢) is homogeneous.

For re {r*,r_ +1,..., r+} divide the observed signal into two fragments
X, ={xnx, b X, ={x,,...x;} of lengths 7, and 7, correspondingly: T,=7-1;
T,=T-t+1,L+T,=T.

Under fixed r define hypotheses:

H, :t, =T +1, the signal is homogeneous;

(1)

H, :t, = r, the signal contains the change-point at the time moment 7 .
Introduce a non-parametric estimator of the spectral density S (A, Ae [— Jr,:r], i=12
that is calculated from the fragment X, [1]:
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f =] [

Sm=2Z Zw‘”{ - )1*“(27’,‘”], @

W (@)= Ky Z W(K,:_ (@+2m))

=0
~ -~ 2
where K, is an smoothing parameter, I(T‘)(A)=§-1},—id,(i)| is the periodogram,
. AT,

4T,
d ()= z X, exp{x ‘ZJ} is the Fourier transform of the fragment X, i* is the imaginary unit,

raT g+l
W(a),—® <a < is an weight function, IW (a)da =1, W(-a)=W(a).

Define a statistic for change-point detection based on difference between the spectral
density estimators that are calculated from the fragments X, X, :

Ro=36,0)-35.0, ))z/,,. 2(1)+5,2(1,)), (3)

s=|

where {4,,..,A4 Ye[-7,x] is a fixed set of frequencies such that i(ﬁl(ﬂ.s)—g'z (113))2 >0,

|

The statistic (3) is similar to the statistic from [2] for bivariate time series.

It can be shown if the estimators of the spectral densities S‘, 1), S"z (A) are consistent,
then the statistic (3) converges on probability to a limiting functional that attains the maximal
value when the change-point is present: 7 =1¢,.

Introduce an auxiliary statistic:

k=3 6,0)-50,) /): §2(1,)+S23,)

¥=t s=1
Let 0= I W(a)da,c,(u) be the covariance function of the fragment X, .
Theorem 1 Let the following conditions hold (i =1,2):

(o} ) ifuﬂc,.(u){mo; €2) |a(@)da<=; C€3) T ok, —m,% - 0;

T ), 0 <y <1,m-> x; C4) Under asymptotics C3) lengths of the fragments are com-
parable values.
Then under true H, a statistic F = [Z (5'[2 (1 )+ 5‘22 (2, ))Eﬁ (t,)—- A4, ]/B,,,
s=1

has asymptotically normat probability distribution N,(0,1), where

A, =ia,;8m = ‘/Zm:bs R
s=} s=1



- E?l ‘{E?"z ; o2 {(:f- KT:_ 2 ; 2
a,'—?.:r[ I + 7 ](S.(/L)) g+o(l), b, =8 [ 7 + 7 ](Sl(/l,)) 0 +o(l).

2 i 2
On the base of Theorem 1 construct a test for change-point detection with significance
level ¢

2
decide {H“’A 1) =20, )
H_,A(r)>6,,
5, =alk; /T, + K; /L2071~ 6)+1)Q,

where ®'(p) is the quantile of the standard normal probability distribution with the disribu-
tion function ®().

[t can be proven that the statistic A’(¢) along with the statistic 8’; (r) can be used as
statistical measure of difference between the hypotheses H,,, H,,.

Theorem 2Let the conditions Ct-C4 of Theorem 1 hold. Then under the true alterna-
tive hypothesis H, the statistic Az (r,) has the asymptotically normal probability distribu-
tion:

. S (5.(4,)- 5, (2
L{Al(re;(—Ta(y{;;Tz)} N (0), a(”)_Z(() (_)i

S(srG)vsia)
)= 40 £6,)-5,(2) [K’S‘(” il )] /(s&(SE(A) s1)))

y=l
} T,
Corollary The following approximation of the power of the test (4) takes place:

142

An algorithm for estimation of a time moment of the change-point is based on the ex-
tremum property of the statistic (3) and the test (4).

At the time moment =7+ 1K , 7 ~I+1 the decision on change-point presence is
made on the base of a sample x, ,,...,x,,,, (“moving window”) for fixed N =2! (lis a pa-
rameter).

The algorithm for a change-point detection in the signal consists in successive dis-
placement of the moving window with a fixed step along the signal, caiculation of the statistic

A (7), finding of its local maximum values, and comparison of the found maximum values
with threshold value. An estimator of the chan%e-pomt time moment 7 is defined as:

{argmax& (), max{A Oirelr ..z, }}> 8, ,

T +1, otherwise.

59



Statistical classification of the diastole fragments by the autoregressive model
The diastole ffagment X" ={X,,.,X,} of size n consists of the observations from
L>2 classes{Q,,..,Q.}. The observation X, belongs to the class with a random index
d’eS,S={2,..,L} t=1n).
Under the fixed class index d =i (i € §) the observation X, = (x, X,z ) € R is
the realization of the length 7, of the autoregressive time series of the order p 21 (AR(p)):
x| +00x] v+ G0xl_, =& le Z ={0,41.42,.}, 5
where 8 =(8].....9,) € R? is the vector of the autoregressive coefficients for the i-th class;

{&, )= are jointly independent normal (Gaussian) random variables:

£ }=0, D)= E{g =0 <o, 1z, ies. ©)
Also the classes {2} are characterized by the prior probabilities:
0= Pld® =i} >0,ieS (20 +..+70=1). )
Thus, the classes {Q,},; are determined by the characteristics {z’,8°},, and the
variance o’ [3,4].
According to tie values {8}, we suppose:
z: zp+§6§z"""=0,iz;{l,ieS. (8)

F=i
The true classification vector D° = (4&1’10 ,...,d,? Y €S8”" is known. The discriminant analysis
problem is to consruct c?,,+l,3,,+2 € § for the true unknown class indices o f the new-
registered observations X, X,,, on the sample X" = {X,,.., X} of sizen.

Transform the source sample X” ={X,,.,X_ } to the sample?” ={¥,,..Y },
whereY, € R? (4 =1,n) is the ML-estimator for the p-vector of the autoregressive coefficients

6:, € R constructzd on the observation X', € R” :

Ir,.6, }=argmaxin p(X,;,0). ©)
(6.0}
Under the fixed class indexd, =i (ie §):
PLX,36°.6) = n, (X7 |0, R (8} ,oN2m) P 6T P x (10)
1 b o o ?
xexp -—— ¥ (x", +6‘”x‘ o +...+9f X, ) t
202 1= pat : ponine

where O, is zero p -vector;

,
X=X, 1) = (X)X, puasen X, p Y € R X =(x50,x,) € RS



ir2 1 re -l
n,(y| 1,2 =(27)"" " (det(T)) exp(—— (¥~ )27 (v - 4)

is the probability density function of the p -dimensionai (¥ € R” ) normal probability distribu-
tion N, (4,Z)with the mean vector peR’ and the covariance (px p)-matrixZ
(det(z)=0);

R,(6),0)= (,0|Hi (€,°,cr)}:‘m = E{X?(X?y|d° =i} (11)
is the nonsingular covariance (px p)matrix formed the autocovariances:
(60,09 = Efx,x, ., |d° =i}, k=0,2,.., determined by the Yule-Walker equations:

f
2 8/p 0),0)+p (6, 0)=0" (12)
F=1

4
Under increasing observation lengths:

T -4, f=1,n, (13)
the ML-estimators {Y,}", from (9) can be approximately replaced by the L S-estimators:

A 1z
Y; =—‘(ZX.§(X:? 'J Zxﬁ‘X:’ (14)

I=p+] i=p+t

$ 0%, (8%0)+p (8°.0)=0, k=12
- U.ph_ﬂ i’ PR » ylayras

X5 = (¥ p¥, ) €R?, t=1n,
or by the Yule-Walker estimators determined by the equations (12):
5oy 2 > . o ~r YR P
YJ‘ = ....(R:P) rrp’ R.rp = (p|.k-f[)f,!=l’ r‘P =(pl ""9)op) > 1= lsns (15)
where p7 = Z:: X%, ., (T, —j) is the estimator of the autocovariance p, (45":’er )
(7 =0,,.., p)on the observation-realization X, of length T, .

Theorem 3 Let under the model (5}(7) the stationarity condition (8) be satisfied.
Then under the fixed D’ =(d},...,d)) ¢ S” the ML-estimators Y,,....Y, from (9) are consis-

tent estimators of the corresponding autoregressive parameters (¢ = Ln):

F
Y, =685, T, -+, (16)
and have the asymptotically normal distributions:
JT.(¥,-8%)~ N (0,.6° R} (85%,6)), T, >+, (7

where the covariance matrices {R (8 ,0)},.; are from (11), (12).

i

To classify the sample ¥” ={Y,,...,¥,} the following discriminant analysis procedure
can be used [4].
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1. On the transformed sample ¥” ={¥,,...¥ } and the true classification vector
=(d}....d)) €S" the unknown class «centres» {8}, ¢ are estimated:

9,425 )-125 Y, ieS, (18)

=l

where 8, = {Lif j=i;0,if j=#i} 1stthroneckersymbol
2. The new observation Y (constructed on X € {X ne1> X pez ey ) 18 classified:

(19
€8
Now investigate the efficiency of the procedure (18), (19).
This procedure is based on the decision rule (DR)
d=d(Y;6°) =argminlt - 6’|, YeR”, 20

ie§

and on the “plug-in” DR d, =d(Y,;t9)=argmle, -—9,|, t=Lnn+l,n+2,.. obtained from

e8
the DR (20) by substituting the statistical estimator 6 = (6} ,...,éi)' instead of the unknown
vector 8° & R of the true autoregressive parameters {6#°},_ .
Let us evaluate the risk (the classification error probability) of the DR (20):
r, = Pld(Y;8%)#d°}, 21
under the conditions when length T of the source observation X € R’ comresponded the M1 -
estimator ¥ € R? is large (T — +o0, the asymptotics (13)).

Theorem 4 Under the conditions of Theorem 3 the risk (21) of the DR (20) satisfies
the relation:

rir =1, T—+m; (22)

0 - 69
r=1-Yx) “[ (@°~ef)’z+ﬁLm’—| (210, RNE. 00z,
s RPJ:ES 20
Fi

where U(w) ={1,if @=0;0, if @ <0} is the unit function.
For the case of two classes (L =2):

6 — o led - 9
o sa] T L gl 2
TEm 20A67,87) a)[ 2006°,8%) |’ @)

where A(6;,67) =J(9}’ ~6}YR;\(6),0X6] -67); () is the distribution function of the
standard Gaussian law N, (0.1).

In practice at large lengths of observations (7 — +w) the proved relations (22), (23)
allows approximately evaluate the risk (21): 7, = 7, .
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Experimental results

The numerical analysis of efficiency of the proposed change-points detection algorithm
was performed by statistical modeling.

Acoustic signals of the blood flow were simulated in the following way: duration of
the signal is 1000 milliseconds, the systole lasts from 0 millisecond to 300 milliseconds, the
flap of the mitral valve damper lasts from 301 milliseconds to 350 milliseconds, the diastole
lasts from 351 milliseconds to 1000 milliseconds. All fragments of the signal are described by
AR(2) model with different parameters. The accuracy of change-point detection at a specified
time moment in the blood flow signal for healthy men and men with the coronary ischemic
disease is presented in Table 1.

Time, milliseconds Accuracy of a change-peint detection at the moment ¢, %
=275 =300 =325 =350 =375 =400
{no change- | (there is a | (no change- | (there is a | (no change- | (no change-
points) change-point) | points) change-point) | poinis) points)
Healthy men 100% 25% 95% 95% 97% 100%
Men with the coro- | 160% 97% 97% 94% 95% 100%
nary ischemic dis-
ease

Table I Accuracy of a change-point detection

Thus, in order to form a training sample of the blood flow signals for healthy men and
men with the coronary ischemic disease one needs to extract diastole fragment from the signal
from =400 milliseconds, which presents stationary part of the diastole.

The training samples were formed by 500 stationary fragments of diastole of healthy
men and men with the coronary ischemic disease. To each sample the classification procedure
(19), (20) based on the different types of estimators (the ML-estimators (9), the LS-estimators
(14) and the Yule-Walker estimators (15)) is used. Estimated frequencies of error decision
(FED) and the risk of the classification procedure are presented in Table 2.

FED; Estimators . *
T ML | LS | Yule-Walker | Risk: 77
75 [0.186 | 0.188 | 0232 0.150
100 | 0.112] 0112 | _ 0.153 0.125
125 | 0.090 | 0.090 ] 0.126 0.099

Table 2 Frequency of error decision (FED)
These investigations were supported by ISTC (Project B-705).
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