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Abstract. The class of linear decision rules is studied. A new algorithm for weight correction,
called an “accelerated perceptron™, is proposed. 1n contrast to classical Rosenblatt’s percepiron
this algorithm modifies the weight vector at each step. The algorithm may be employed both in
Jearning and in self-learning modes. The theoretical aspects of the behaviour of the algorithm
are studied when the algorithm is used for the purpose of increasing the decision reliability by
means of weighted voting. in this case the simple majority vote may be used as initial decision.

1. Introduction

Linear decision rules are widely spread in pattern recognition when features are
quantified and there are 2 classes: K; and K. In this case an object Q is descnibed by n-
dimension vector (x,,K ,x,). The linear decision rule is determined by n-dimension
weight vector (w,,K ,w, ) and threshold w,. The object is classified into class K; if
wx, +K +w x > w, and into class Ky if wx, +K +w,x, <w, . It is useful to introduce
(n+1)-dimension vector X =(-1, x,,K,x,) and (n+1)-dimension  vector
W = (w,,w,,K ,w, ). Then the object is classified into class Kj, if sgn(#,X) =1 and into
class K if sgn(W,X)=1. The problem is to find a vector ¥ which provides a good dis-
crimmnation among two classes.

Let first consider the learning case when we have a training set consisting of some
(for a example /) objects from the class K; and some (for a example m) objects from the
class Kj. In such case we may try to find # which provides minimal number of erroneous
discriminated objects. If / and m are large enough (/, m >> n) this approach by all means
will provide good discrimination but it may take anomalous amount of computing work.
On the other hand if /and m are rather small it may be not so difficult to find W which
separates training objects without any mistakes but there is a good deal of uncertainty in
choosing such W. In this case we would like W, which maximizes distances between train-
ing objects and separating hyperplane.

Point out a simple recipe to overcome these difficulties. Let us determine the cen-
tral points of training sets in classes K; and K, as X/ =—:~ ZX,. , Xf= 1 ZX;' and

X.ek, m x ek,
define the vector #7 = X7 — X7, Further this weight vector and determined by it decision
rule will be called baricentric. In many cases baricentric rule may be practically accept-
able. But for many years an attention of investigators working in the field of pattern recog-

nition was concentrated on another approach consisting in sequential recurrent weight
modifying. This approach known as perceptron was firstly suggested by Rosenblatt [5].

2. Drawbacks of classical perceptron

Let’s connect with each object Q; from the training set a variable z; :
z,=1,ifQ; €K and z, = -1, if Q; €K>. The objects Q; are picked out of the training set
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sequentially and the weight vector is modified at each step by classical perceptron algo-
rithm as follows:

W o= We: if sen(W,,X,)=2z
MU, 42, X, i sen(WL X)) #z, .

The classical perceptron algorithm was studied in a number of works [1,2,3,5].A remark-

able property of it is the following. If the objects are picked up cyclically out of the train-

ing set then after a finite pumber of weights corrections the algorithm finds the hyperplane

- correctly separating the training set, if such a hyperplane exists. In practice, however, noth-

ing at all is usually known about separability. At the same time, classical perceptron a

number of drawbacks. These include:

1. slow leamning, since the weight vector is only corrected when misclassification takes
place;

2. random final position of the separating hyperplane in the case of linear separability, of
the training set while common sense and experience suggest that good separation re-
quires the training objects to be as far from the hyperplane as possible;

3. in the case of linear inseparability of the training set, the modulus of the weight vector
remains small during learning and there is a large change in hyperplane position at
each correction, leading to strong fluctuations in the quality of decision rule;

4. self-learning is impossible.

These drawbacks led to striking the perceptron off the list of practically working
algorithms. Our aim is to show that after a little modification the perceptron idea may be
done practically working.

3. “Accelerated perceptron”

In self-learning case we have a set of objects from two classes K, and K; too, but it
is unknown which object from which class is, that is z; are unknown. If we have some ini-
tial decision rule satisfactory quality, we can increase it in this case too. The idea formu-
lated by Pierce {4] implies using the decision rule output instead of unknown z,. In other
words the output of decision rule is considered as the true value of z;. Classical perceptron
is unable to self-learning because it doesn’t modified the weight vector when true classifi-
cation taking place.

The algorithm “accelerated perceptron” [6, 7] modifies the weight vector at each
step, regardless true or erroneous classification taking place. That’s why it can be em-
ployed in self-learning mode using Pierce’s principle. The accelerated percepron does not
suffer from the drawbacks of classical perceptron, although it does not guarantee error-free
separation in the separate case.

The weight correction rule for an accelerated perceptron in learning mode is

W,=W +zX,.
The weight correction rule for an accelerated perceptron in self-learing mode is
W =W, +sen(W,, X, )X,.

It’s not difficult to see that in learning mode the weight vector tends to become col-
linear to baricentric vector and decision rule tends to become baricentric. In self-learning
mode the behavior of the accelerated perceptron is more complicated. For theoretical
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analysis of its behavior in this case we’ll consider a special probiem of optimal voting de-
ciston. :
4. The problem of optimal committee decision

Let’s we have as before a pattern recognition problem with two classes K; and K3
and n classifiers which classifier presented object Q in one of two classes. Classifiers may
be experts, technical systems or pattern recognition algorithms. The decision i-th classifier
¥, =1, if it classifiers an object into class Kjand y, = -1 in opposite case. The true be-

longing of the object is z € {—1, 1}. The problem is to classify the object on the basis of n-
dimension vector ¥ = (3,.K , y,), that is to find the Boolean decision function

FOy=fpK.p)i-h " ==L 1

which gives the most reliable reconstruction of z.
We’ll consider a probability model of classifiers with following properties:
1. a priory probabilities be equal

Priz=1} _Priz=-1}_. .
2. for each classifier the probability of correct classification does not depend on belong-
ing of classified object and is at least

Pr{y, =llz=13 _ Pr{y,=-l|z=-1}_ p, 2'/:;

3. the classifiers are statistically independent.
It’s well known that the decision, minimizing probability of error in this case, is the

threshold function £(¥) =sgn(w,y, +K +w,y,), where w, =1ogif’f ,i=1K ,n. The

baricentric vector

Wt =1 YPr(Y)z=1) -4 YPr(Y |z=-1)
: re:—zi,l}” ! Ye{—zl,l}" = (2P| - LK ,2P,, - I)_

The probability of etror for baricentric function is not exceed exp(—(W*?) /2){6,
.
5. Accelerated perceptron in commettee decision

The accelerated perceptron in learning mode will be

Wen =W, +2,7,
in self-learning mode
Wen =W, +sgn(W,. Y)Y, )

and majority function f(Y)=sgn(y, +K +y,) may be used for initial decision.

Theorem 1 In the case of learning, the sequence of threshold functions generated

by accelerated percepron stabilizes at baricentricl function f(Y)=sgn(W?*.,Y) with prob-
ability 1.
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In order to get an analogous result for the case of self-learning, we need to define
two new concepts
Definition 1 The vector M = M(Y) = ZPr(Y Y (Y)Y is called the moment of the func-

Yel-Li"

tion f(Y).
Definition 2 The funciion f(Y) is called stable if f(¥Y)=sgn(M(/),Y).

Theorem 2 iIn the case of self-learning, the sequence of threshold functions gener-
ared By accelerated percepitron stabilizes at one of the stable function with probability 1.

Theorem 3 If p, 2 s +c, ¢>0, i=1K ,n, then moments of all stable functions

in the positive orthant are of the form (2p—1)W? + E, where | E i< 4-/n exp(—2nc*) and p
is a probability of correct decision.

Theorem 4 if p, >, i=1K ,n, then for every & >0 there is such a constant
c(¢) > 0, that for every initial weight vector W belonging to the positive orthant and such
that |W > c(€), all the weight vector, generated by the accelerated percepiron in case of
self-learning will belong to the positive orthant with probability 1,

According to the three last theorems the decision function of accelerated perceptron
in self-learning mode tends to baricentric decision function provided that a number of clas-
sifiers is large enough and they are of good quality. This guarantee an improvement of the
decision function quality during self-learning.
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