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Abstract

General classical equation of spin motion is explicitly derived for a particle with

magnetic and electric dipole moments in electromagnetic fields. Equation describing

the spin motion relative to the momentum direction in storage rings is also obtained.
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Electric dipole moments (EDMs) of particles, atoms and molecules are smoking guns

of new physics beyond the Standard Model (New Physics BSM). There are many ongoing

and near future experiments measuring EDMs and anomalous magnetic dipole moments

(MDMs) of charged particles [1]. One of the most important equations is the following

equation of spin motion,

dζ

dt
= Ωs × ζ, (1)

where

Ωs = −
e

m

[(

G+
1

γ

)

B−

(

G+
1

γ + 1

)

v ×E+
η

2
(v ×B+ E)

]

. (2)

In this equation, ζ is the rest frame spin pseudovector, G = (g−2)/2, g = 2µm/(es), η =

2dm/(es), γ = ǫ/m is the Lorentz factor, ǫ is the kinetic energy including the rest one,

and s is the spin. We consider the case of s = 1/2 and use the system of units ~ = 1, c = 1.

However, to be curious enough, the explicit derivation of this equation has not been

published [2]. There are several confusions on interpretations of this equation. In the

present letter, we derive it explicitly. It is necessary to take into account that the EDM and

MDM terms are not fully symmetrical. The difference is caused by the Dirac (“normal”)

magnetic moment, the Thomas precession and the evolution of particle momentum. The

last two effects depend on the electric charge of the particle.

In the relativistic theory, the spin pseudovector is not conserved. We should obtain an

equation of motion for the spin of the moving particle. For that purpose, it is convenient

to introduce the spin 4-pseudovector and the momentum 4-vector, aµ and pµ, whose

definition in the particle rest frame is given by [3]

aµ = (0, ζ), pµ = (m, 0). (3)

So, in any frame

aµpµ = 0, aµa
µ = −ζ2. (4)

In a frame moving with velocity v = p/ǫ, the aµ = (a0, a) 4-pseudovector is defined by

aµ = (a0, a), a = ζ +
p(ζ · p)

m(ǫ+m)
, a0 =

a · p

ǫ
=

p · ζ

m
, a2 = ζ2 +

(p · ζ)2

m2
. (5)

The relativistic equation of spin motion in an electromagnetic field using this 4-pseudovector

has the form

daµ

dτ
= αF µνaν + βuµF νλuνaλ + γF ∗µνaν + δuµF ∗νλuνaλ (6)



with F ∗µν = 1

2
ǫµνρσFρσ. Here α, β, γ, δ are coefficients whose meanings are determined

as follows. In the rest frame, Eq. (6) becomes

dai

dt
=

dζ i

dt
= αF ijζj + γF ∗ijζj = α(ζ ×B)i + γ(E× ζ)i. (7)

In this frame, the equation of spin motion is

dζ

dt
= 2µζ ×B+ 2dζ × E. (8)

Comparing this equation with Eq. (7), we obtain

α = 2µ, γ = −2d. (9)

The value of β results from the equation of motion

m
duµ

dτ
= eF µνuν (10)

and from aµu
µ = 0 that

uµ

daµ

dτ
= −aµ

duµ

dτ
=

e

m
F µνuµaν . (11)

On the other hand, multiplying Eq. (6) by uµ and taking uµu
µ = 1 into account, we

obtain

uµ

daµ

dτ
= (2µ+ β)F µνuµaν + (−2d+ δ)F ∗µνuµaν . (12)

Then

β = −2
(

µ−
e

2m

)

≡ −2µ′, δ = 2d. (13)

As a result, the equation of spin motion takes the form

daµ

dτ
= 2µF µνaν − 2µ′uµF νλuνaλ − 2d(F ∗µνaν − uµF ∗νλuνaλ). (14)

This is the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation [4, 5, 6] added by the

EDM terms.

In the original paper of Bargmann, Michel, and Telegdi [6], an extension of the

equation of spin motion due to an electric dipole moment has already been discussed.

However, such an extension has been based on a dual transformation of F µν into F ∗µν

and an explicit derivation of Eq. (14) has not been presented.



The spatial part of this equation is presented by

da

dt
=

[

da

dt

]

MDM

+

[

da

dt

]

EDM

,

[

da

dt

]

MDM

=
2

γ

[

µ {a×B+ (a · v)E}+ µ′γ2v {−a ·E+ v · (a×B) + (a · v)(v ·E)}
]

,

[

da

dt

]

EDM

= −
2d

γ

[

(a · v)B− a× E+ γ2v {−a ·B− v · (a×E) + (a · v)(v ·B)}
]

,(15)

where γ = ǫ/m. We consider the evolution of ζ. Since

ζ = a−
v(a · v)ǫ

ǫ+m
,

it is defined by

dζ

dt
=

[

dζ

dt

]

MDM

+

[

dζ

dt

]

EDM

,

[

dζ

dt

]

MDM

=

[

da

dt

]

MDM

−
vǫ

ǫ+m

([

da

dt

]

MDM

· v

)

−
(a · v)ǫ

ǫ+m
·
dv

dt

−
vǫ

ǫ+m

(

a ·
dv

dt

)

−
v(a · v)m

(ǫ+m)2
·
dǫ

dt
,

[

dζ

dt

]

EDM

=

[

da

dt

]

EDM

−
vǫ

ǫ+m

([

da

dt

]

EDM

· v

)

. (16)

Evidently, the quantity
[

dζ

dt

]

MDM
is expressed by the T-BMT equation. When we use

the decomposition of the equation of motion (10) into spatial and temporal components,

dv

dt
=

e

mγ
[E+ v ×B− v(v ·E)] ,

dǫ

dt
= ev ·E, (17)

tedious but simple calculations result in

[

dζ

dt

]

MDM

=
2µm+ 2µ′(ǫ−m)

ǫ
ζ ×B+

2µ′ǫ

ǫ+m
(v ·B)(v× ζ) +

2µm+ 2µ′ǫ

ǫ+m
ζ × (E× v)

=
e

m

[(

G+
1

γ

)

ζ ×B+
Gγ

γ + 1
(v ·B)v× ζ +

(

G−
1

γ + 1

)

ζ × (E× v)

]

.(18)



We present a more detailed derivation of contribution of the EDM. Substituting the

relation a = ζ + v(ζ · v)γ2/(γ + 1) into Eq. (15) results in

[

da

dt

]

EDM

= 2d

[

1

γ
(ζ × E) +

γ

γ + 1
(v × E)(ζ · v)− (ζ · v)B+ γv(ζ ·B)

−
γ2

γ + 1
v(v ·B)(ζ · v) + γv(v · (ζ × E))

]

. (19)

Since

−
vǫ

ǫ+m

([

da

dt

]

EDM

· v

)

= −2d
γv

γ + 1

[

γ(v · (ζ ×E)) +
γ2 − 1

γ
(ζ ·B)− γ(ζ · v)(v ·B)

]

,

(20)

the result is given by

[

dζ

dt

]

EDM

= 2d

[

ζ × E+
γ

γ + 1
(v · E)(v× ζ)− ζ × (B× v)

]

=
eη

2m

[

ζ ×E+
γ

γ + 1
(v · E)(v× ζ)− ζ × (B× v)

]

. (21)

The resulting angular velocity of spin precession is

Ωs = −
e

m

[(

G+
1

γ

)

B−
γG

γ + 1
(v ·B)v −

(

G+
1

γ + 1

)

v ×E

+
η

2

(

E−
γ

γ + 1
(v · E)v + v ×B

)]

. (22)

Equation (22) coincides with that obtained by Nelson et al. [2] with the use of dual

transformation of terms proportional to G. The same dual transformation G → η, B →

E, E → −B has been applied by Khriplovich [7] for the derivation of this equation.

However, the problem is not too simple. The three-component spin ζ is defined in the

rest frame, whereas E and B are the fields in the laboratory frame. In addition, one

also needs to take into account the nontrivial effect of the Thomas precession [4, 5]. We

suppose that the explicit derivation of Eq. (22) which is basic for all EDM experiments

is necessary.

This equation also coincides with classical limits of quantum-mechanical equations

obtained for spin-1/2 and spin-1 particles in Refs. [8, 9] and [10], respectively.



The experimental situation usual for EDM experiments in storage rings consists in

B · v = 0, E · v = 0. (23)

In this case, Eq. (22) takes the form (2).

In relation to the EDM experiments in storage rings, taking into account a longitudi-

nal magnetic field may be important for calculations of systematical errors. A longitudinal

electric field is usually associated with a beam acceleration. This field can be applied in

the EDM experiments performed by the resonance method [11].

One usually considers the spin motion relative to the beam direction and rewrites Eq.

(17) in terms of the unit vector in direction of the velocity (momentum), N = v/v = p/p:

dN

dt
=

v̇

v
−

v

v3
(v · v̇) = Ωp ×N, Ωp =

e

mγ

(

N×E

v
−B

)

,

where Ωp is the angular velocity of rotation of the velocity, momentum, and beam direc-

tions. Thus, the angular velocity of the spin rotation relative to the beam direction is

given by

Ω = Ωs −Ωp = −
e

m

[

GB−

(

G−
1

γ2 − 1

)

v× E+
η

2
(E+ v ×B)

]

. (24)

For more detailed derivations, especially for calculations of systematical errors, it is

helpful to use the cylindrical coordinates [12].

Thus, the general classical equation of spin motion has been explicitly derived for

the particle with magnetic and electric dipole moments in electromagnetic fields. This

equation coincides with the classical limit of corresponding quantum-mechanical equations

previously obtained for spin-1/2 and spin-1 particles in Refs. [8, 9] and [10], respectively.

We also present the equation of spin motion relative to the momentum direction in storage

rings.
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