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A new high-precision experiment to measure the muon g-2 factor is proposed. The developed
experiment can be performed on an ordinary storage ring with a noncontinuous and nonuniform
field. When the total length of straight sections of the ring is appropriate, the spin rotation frequency
becomes almost independent of the particle momentum. In this case, a high-precision measurement
of an average magnetic field can be carried out with polarized proton beams. A muon beam energy
can be arbitrary. Possibilities to avoid a betatron resonance are analyzed and corrections to the g-2

frequency are considered.
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I. INTRODUCTION

Measurement of the anomalous magnetic moment of
the muon is very important because it can in princi-
ple bring a discovery of new physics. Experimental
data dominated by the BNL E821 experiment, a7 =
116592080(63) x 10~ ! (0.54 ppm), are not cons1stent
with the theoretical result, al; = 116591790(65) x 10~ ",
where a = (g9 — 2)/2. The discrepancy is 3.20: a,7 —

fﬁﬁ = 4290(90) x 107! [1]. In this situation, the exis-
tence of the inconsistency should be confirmed by new ex-
periments. The past BNL E821 experiment [2] was based
on the use of electrostatic focusing at the “magic” beam
momentum p,, = me/va (ym = 1+ 1/a =~ 29.3). An
upgraded (but not started up) experiment, E969 [3], with
goals of 05yst = 0.14 ppm and o4q; = 0.20 ppm is based
on the same principle.

Since the muon g¢-2 experiment is very important, a
search for new methods of its performing is necessary.
One of new methods has been proposed by Farley [4]. Tts
main distinctions from the usual ¢g-2 experiments are %)
noncontinuous magnetic field which is uniform into cir-
cular sectors, ) edge focusing, and 4i4) measurement of
an average magnetic field with polarized proton beams
instead of protons at rest. A chosen energy of muons
can be different from the “magic” energy. Its increasing
prolongs the lab lifetime of muons. As a result, a mea-
surement of muon g¢-2 at the level of 0.03 ppm appears
feasible [4].

In the present work, we develop the ideas by Farley.
We adopt his propositions to measure the average mag-
netic field with polarized proton beams and to use a ring
with a noncontinuous field for keeping the independence
of the spin rotation frequency from the particle momen-
tum. We also investigate the most interesting case when
the beam energy can be arbitrary. However, we propose
to perform the high-precision muon g-2 experiment on
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an ordinary storage ring with a nonuniform field created
by superconducting magnets. We prove that the inde-
pendence of the spin rotation frequency from the parti-
cle momentum can be reached not only in a continuous
uniform magnetic field [2, 3] and a noncontinuous and lo-
cally uniform one [4] but also in a usual storage ring with
a noncontinuous and nonuniform magnetic field. In the
last case, the total length of straight sections of the ring
should be appropriate. We also analyze possibilities to
avoid the betatron resonance v, = 1 (v, is the horizontal
tune) and consider corrections to the g-2 frequency.
The system of units i = ¢ = 1 is used.

II. g-2 RING WITH A NONCONTINUOUS
MAGNETIC FIELD AND MAGNETIC
FOCUSING

Let us consider spin dynamics in a usual storage ring
with a noncontinuous magnetic field and magnetic focus-
ing. The general equation for the angular velocity of spin
precession in the cylindrical coordinates is given by (see
Ref. [5])
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Eq. (1) is useful for analytical calculations of spin dy-
namics with allowance for field misalignments and beam
oscillations. This equation does not contain small terms
which can be neglected. 7 = 4dm/e is an analogue of
the g factor for the electric dipole moment, d. The sign
|| denotes a horizontal projection for any vector. There-
inafter, the electric dipole moment will be disregarded.
The vertical magnetic field, B,, is the main field in the
muon g¢-2 experiment. The spin precession caused by this
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field is defined by

@ = _°4B, P
o) = L, 2)

Let (@ denotes the average value of w(®. The spin
coherence is kept when

'@
= 0. (3)

For a storage ring with a noncontinuous field, the quan-
tity B, should be averaged.

This condition defines a spin-isochronous ring, i.e., the
spin precession frequency is independent of the momen-
tum at the first order.

Condition (3) can be satisfied for ordinary storage rings
with magnets creating nonuniform field (Fig. 1). Beam
direction is normal to the magnet faces and there is not
edge focusing. The number of bending sections can be
different. If the field created by the magnets is given by
B.(p) = const - p~ ", the field index and betatron tunes
into bending sections are equal to

B
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where By = B.(Rp), * = p — Ry, and Ry is the ring
radius. Average angular frequency of spin precession is
given by
0@ WM _ _Weasz(p)7 (4)
mp+ L m(mp+ L)

where L is a half of the total length of the straight sec-
tions (Fig. 1). The muon anomaly is equal to
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where the fundamental constants g, and m, /m,, are mea-
sured with a high precision. The magnetic field is the
same for muons and protons when they move on the same
trajectory. In this case, their momenta coincide.

When the momentum increases (p > po), the magnetic
field becomes weaker, but the time of flight in the mag-
netic field becomes longer. The spin precession is defined
by

dp
0= (1-mn)eB.(p). (6)
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Condition (3) leads to dQ\® /dp = 0 and is satisfied
when
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where R corresponds to po and By. In this case
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FIG. 1: The storage ring.

and the following relation takes place:

E_%_(l_n)i
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where C' is the orbit circumference. As a result, the mo-
mentum compaction factor is
AC/C
_AC/G (9)
Ap/po

Since

AC _ 1ap AT

e
Co 7 po Ty’

where T is the revolution period, the definition of a can
be brought to the usual form:
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Ty %) po
Evidently, the spin-isochronous ring (@ = 1) is not
isochronous in the usual sense, i.e., the beam revolution
frequency depends on the momentum.

Eq. (7) is not exact because it does not include a
correction for the fringe field. This field also contributes
to the average field, but it is independent of p. The
fringe field is important only near the magnet edges and
causes the correction to Lg of order of the ratio of the
magnet gap to the ring radius (~ 1072). This correction
depends on the number of the straight sections and can
be analytically and numerically calculated because the
magnet field is known with a needed accuracy.

Evidently, the correction to the local value of wg,“) is
given by

6w /w(®) = 6B, /B..

The corrected values of Lg also coincide for muons and
protons because particles with equal momenta move in
the same field.

Two other corrections to the angular velocity of spin
precession caused by the longitudinal magnetic field and



the vertical betatron oscillations are considered in Sec-
tion IV. While these corrections are different for the
muons and protous, they are rather small (~ 1 ppm).

The real value of the length of the straight section, L,
can slightly differ from Lg. In the general case,

o= 7TRO
o 7TRO-|—L—L0'

The difference between the real and nominal values of the
average angular frequency of spin rotation is given by

(10)
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It is important that Eq. (11) does not depend explic-
itly on B. The first term in the r.h.s. of this equation
disappears if we define Ly = L. In this case, py is the
vertex of a parabola in the momentum space. To find pg
and adjust the ring lattice, one can make measurements
with proton beams. Three measurements with different
values of p are sufficient. The average proton momentum
can be kept with radio frequency (RF) cavities put into
straight sections of the ring. The longitudinal electric
field in the cavities does not influence the spin dynamics.

III. AVOIDING A BETATRON RESONANCE

Condition (3) leading to Eq. (9) should not be ex-
actly satisfied. It can be shown that the relation a =1
leads to the betatron resonance v, = 1 which results in
zeroth frequency of horizontal coherent betatron oscilla-
tion (CBO) of the beam as a whole and a loss of the
beam [6]. Therefore, the total length of the straight sec-
tions should slightly differ from Lq so that the CBO tune
would be small but nonzero:

L— Lo

0
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Typically, in a weak focusing ring a > 1. Eq. (10) re-
sultsin L < Ly. We expect that the CBO tune about 0.01
is sufficient to keep the beam. In this case, the appropri-
ate choice of the total length of straight sections A ~ 0.01
reduces the dependence of the spin rotation frequency on
the beam momentum by two orders of magnitude. As a
result, the use of proton beams for measuring the average
magnetic field becomes quite possible.

Experimental details depend on the beam momentum.
If it is higher than in the completed experiment (see Ref.
[4]), the muon lifetime in the laboratory frame increases
and the RF cavities may be helpful not only for protons
but also for muons to keep the spin coherence. Other-
wise, the use of low muon momentum (~ 0.3 GeV/c) and
much higher statistics (see Ref. [7]) may even be more
preferable. In this case, the RF cavities are unnecessary
for muons.

IV. CORRECTIONS TO THE g-2 FREQUENCY

The problem of taking into account corrections to the
g-2 frequency is very important. One of the main prob-
lems is an influence of the radial and vertical betatron os-
cillations on the average vertical magnetic field. We can
consider the case when the velocity of unperturbed mo-
tion, vg, coincides with the absolute value of the velocity
of perturbed motion. For the latter motion, the average
longitudinal component of the velocity is approximately
equal to

<o+ > v3, + v3
- 1o~ 27 ) = 192 " 021} 13
ve UO( 203 ) UO( 4vd {13)

It can be shown that the average magnetic field for the

perturbed motion, B, slightly differs from that for the
unperturbed motion, B,,:
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where \ is given by Eq. (12). Approximately,
— v, v\
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1+ A 4uk

When vg, /v ~ voz/vo ~ 0.001, A ~ 0.01, the correc-
tion to the average vertical magnetic field for the betatron
oscillations is rather small and may be even negligible.

A noncontinuous vertical magnetic field leads to a lon-
gitudinal magnetic field on the edges of the magnets.
Possibly, the latter field is a reason of the main correction
to the ¢g-2 frequency. It was asserted in Ref. [8] that this

field causes “the need to know | B -dl for the muons

to a precision of 10 ppb”. However, we should take into
account that the longitudinal magnetic field cannot be
neglected only on small segments of the beam trajectory
near edges of magnets. As a result, the above estimate of
precision should be decreased by several orders of mag-
nitude.

The correction for the longitudinal magnetic field can
be carefully examined. As curlB = 0 and By =
(2/p)(0B;/0¢), the longitudinal magnetic field acting on
a particle oscillates. When the vertical velocity oscilla-
tion (pitch) is given by v, /vg = 1o cos (wyt + J),

OB "R R
By = 207" sin (wt +6), 20 = WLU "= d)&rf
where [ is the trajectory length and w® = wo/Ro is
the cyclotron frequency into bending sections. Evidently,

/B¢dl = 29By sin (w,t + 9).

To estimate the correction, we can suppose that
(0B,)/(0l) = By/b. The length of the considered tra-
jectory segment at the magnet edge is b. Calculations

{16)



can be simplified if we present the angular velocity of the
spin precession in the form

W, = ape; + ay sin (wyt + 0)eg,
_ €B0 (a + 1)’(/)0R0

ag = ———-+

m V/nyb
and suppose that ayp ~ —eBpa/(2m) = const. This is
nothing but an estimate because the vertical magnetic
field strongly varies within the considered trajectory seg-
ment.

To calculate the correction, we can use the results pre-
sented in Ref. [5]. The corrected local angular frequency
is given by

(17)
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The correction to the average angular velocity of the
spin precession caused by the longitudinal magnetic field
is equal to
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where w{¥ and Q@ are given by Eqs. (2) and (4), re-
spectively.

Eq. (19) defines only the correction for one segment
of the beam trajectory. To obtain the total correc-
tion, we should take into account the Maxwell equation

%B -dl = 0. If the g-2 precession did not take place,

the total effect of the longitudinal magnetic field would
vanish. However, the total correction is nonzero owing to
a non-commutativity of rotations and is provided by the
spin component orthogonal to the beam polarization at
the beginning of a beam turn. Therefore, the total cor-
rection, Aﬂl(a), can be obtained with the multiplication

of 50\”) by the additional factor:

(a) /,5(b) —
(@ _ p.so@ p_)] o/ w” =ay when ay<1
Al o0, F_{ 1 when ay > 1 (20)

The quantity b is usually of the order of the magnet
gap. If we substitute the parameters of the BNL E821 ex-
periment into Egs. (19),(20), we obtain |AQEG)/Q(“)| ~1
ppm for both muons and protons.

To measure the total correction with an absolute ac-
curacy of 0.01 ppm, one should determine the magnetic
field parameters with a relative accuracy of 10™% = 102,
Since the field of magnets is well known, extra measure-
ments may be unnecessary. When the muon beam mo-
mentum is significantly decreased as compared with the

BNL E821 experiment (see Ref. [7]), the correction for
the muons becomes an order of magnitude less. For low-
momentum beams, one can suppress the vertical beta-
tron oscillations and additionally reduce the corrections
for both the muons and protons.

In the proposed experiment, the correction for the ver-
tical betatron oscillations (pitch correction) [9] (see also
Ref. [5]) should also be taken into account. Known for-
mulas [5, 9] give the order of magnitude of this correc-
tion (~ 0.1 + 1 ppm). The pitch correction can also be
reduced with a suppression of the vertical betatron oscil-
lations for low-momentum beams. Specific calculations
should allow for a noncontinuity and a nonuniformity of
the magnetic field.

In any case, all the corrections can be determined with
an accuracy of 0.01 ppm or even better.

V. DISCUSSION AND SUMMARY

The stabilization and monitoring the magnetic field is
an important and rather difficult problem. To stabilize
the magnetic field in a few minutes needed for measur-
ing the proton spin precession frequency, superconduct-
ing magnets can be used. It is more difficult to avoid a
change of the magnetic field when switching from muon
to proton storage. However, such a change can be prop-
erly determined. The average magnetic field can be cal-
culated if the beam momentum and the average radius
or frequency of the beam orbit are known. A change of
the average magnetic field brings a corresponding change
of the average radius and frequency of the beam orbit.
Therefore, measuring the frequencies [10] or positions of
the muon and proton beam orbits allows to determine
the shift of the average magnetic field. The average pro-
ton momentum is defined by the RF cavities. In addition
to the muon measurements, proton beams before and/or
after muon runs can be used. The use of these methods
should provide a determination of the shift of the average
magnetic field with a relative accuracy of 0.1 ppm or even
better. As a result, the muon and proton measurements
can be related with a high precision.

The methods of measurement of the g-2 precession in
the proposed experiment and the Farley’s one are very
similar. The important advantage of a noncontinuous
nonuniform ring versus a noncontinuous uniform one is
a possibility to avoid much shimming needed for creat-
ing the uniform magnetic field. Shimming is even more
difficult for the noncontinuous uniform ring than for a
continuous uniform one because of the fringe field. We
expect that the proposed experiment can be carried out
with one of existing rings.

The systematical errors considered above do not pre-
vent to measure the muon g-2 factor with a high preci-
sion. The sum of all systematical errors considered in
the manuscript causes less systematic uncertainty than
that in the planned E969 experiment [3]. While there
are many other systematical errors, we expect that the



precision of the proposed experiment may be approxi-
mately the same or better than that of the planned E969
experiment.

A more detailed theoretical analysis should be based
on the matrix method. The use of the matrix method is
necessary for further theoretical investigations. However,
any theoretical analysis is not sufficient to calculate the
spin dynamics in specific g-2 rings with a needed accu-
racy. Nevertheless, necessary calculations can be carried
out with spin tracking.

Since the theoretical predictions and the experimental
data do not agree, performing new experiments based on
different ring lattices is necessary. Such experiments will
be very important even if they will not provide better
precision as compared with the usual g-2 experiments
[2, 3].

In this work, we propose the new experiment to mea-

sure the muon g¢-2 factor. The developed experiment does
not require much shimming. This experiment could pro-
vide an independent experimental result with different
systematics and the advantages mentioned in the Far-
ley’s paper [4].
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