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Abstract

Numerical simulation of a relativistic runaway electron breakdown

in the upper atmosphere is performed using GEANT4 simulation toolkit.

General features of a relativistic runaway electron avalanche are re-

constructed and properties of radiations accompanying breakdown are

obtained. It is demonstrated dependance of the high energy branch

of photon spectra with respect to an altitude and shown what at the

reasonable parameters hard photons have spectral index close to the

observed value.

1 Introduction

Last decades were rich enough for numbers of the remarkable discover-

ies of different transient electromagnetic phenomena in the upper atmo-

sphere. They covered wide region of the spectra from optical and even
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down to Extremely Low Frequencies – so cold ”Transient Luminous

Events” (TLE) like ”sprites”, ”elves” and ”jets” [1, 2, 3], up to X and

gamma rays – so cold ”Terrestrial Gamma Flashes” (TGF) [4, 5]. Ad-

ditionally to the electromagnetic radiation the electron-positron beams

were observed which are ejected from the Earth to the outer space [6].

All these phenomena are related in some way to a thunderstorm’s com-

plex, they generated in a strong electric field in it and at lest some of

them connected to the lightning flashes [7]. The energy level of some

events is so huge that a question about a neutrons photoproduction is

appeared [8, 9].

Its widely known that an electric field in a thunderstorm’s system

never attains the value of usual air breakdown Eth ≃ 2, 16 kV cm−1,

thus lightning initiates mostly by streamers and leaders [10]. Usual

fields in thunderstorm clouds are order of magnitude lower, but as was

first mentioned by Wilson it is possible for cosmic ray electrons to be

accelerated and even to runaway due to a dependence between energy

ε of particle and slowing-down force F of the media [11]. Namely,

in the nonrelativistic limit ε ≪ mc2 ionization loses decreases with

energy as F ∼ ε−1 ln ε. In the opposite case ε ≫ mc2 it increases

slowly as F ∼ ln γ, where γ is Lorentz gamma-factor. It is clear that

F has a minimum Fmin and if an electron with energy ε > εc where

εc ≈ mc2Ec/2E gets in the electric field E > Ec = Fmin/e then it

become continuously accelerated, i.e. runaway. This process can be

accompanied by an appearance of additional δ-electrons and avalanche

growth of runaway electrons leading to large populations of energetic

electrons is possible what results in the relativistic runaway electron

breakdown [12].

Because of relatively low electric field responsible for producing

such phenomena, the relativistic runaway electron avalanche (RREA)
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is considered as the basic effect for generating such transient process

like TLE and TGF. Moreover, it seems to play crucial role in usual

thunderstorm activity due to sufficient increasing of conductivity in

the cloud [13].

Despite the progress in the theoretical description of energetic phe-

nomena in the upper atmosphere several observed features remain un-

solved. It is not clear how all optical and high energetical phenomena

related to each other [14]. The subject of discussion is a source mech-

anism and location of TGF [15].

Recently one more problem appeared from sensitive measurements

of AGILE Team [16] which confidently detect an excess in the hard part

of the TGF spectra for εγ > 10MeV unexplained by usual models.

Thus a detailed picture of the formation and development of RREA

is needed to clarify the reasons of such peculiarities. The question

about an influence of TGF radiation on artificial satellites and aircrafts

rises up additionally.

In order to trace generation of RREA and accompanied radiation

we perform modeling of such process using GEANT4 simulation toolkit

pay attention to basically initial stages of generation.

In the next section we will describe the general set up of the mod-

eling, then we address to features of obtained spectra in the section 3

and finally in conclusion some results will be summarized.

2 GEANT4 simulation of runaway break-

down

We start from preliminary set up and consider as a modeling volume

(”world volume” in GEANT4 terminology [17]) an initially uniform
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cylindrical layer of atmosphere with height ∆h = 2000 m, radius

R = 1000 m, located on h = 5000 m height and with uniform electric

field E = 2Ec oriented down to the Earth what correspond to the usual

properties in the thundercloud during positive cloud to ground (+CG)

discharge which can produce quasistatic electric field [13]. Density,

pressure and temperature in the modeling volume correspond to their

values on respective height h. The ”Detector” will be a thin ∆h = 10

cm slice of an air as wide as the world volume there particles char-

acteristics will be collected and its position can be chosen anywhere

inside the cylinder. Now it will be close to the top of the modeling

cylinder thereby the formation and further development of a RREA at

the scale of 2 km are possible to observe in all details.

If one considers an electron from cosmic ray secondaries with energy

ε < εc flying vertically into world volume from the bottom then one can

see what any avalanche in the considered volume is not created and

as expected the electron perform several hits with an air atoms but

rapidly loses his energy down to zero. In the opposite case with energy

obeys RREA criteria ε = 1MeV > εc which flux is ∼ 103m−2s−1 one

instead obtains an avalanche shown in figure 1.

Figure 1 shown a complicated structure of the cascade of particles

and demonstrates general features of RREA: exponential growth of

electron number density with characteristic length la which is ∼ 100 m

near Earth and the role of gamma quanta which are able to produce

both an electron-positron pairs and an electrons due to an ionization

what is nicely shown on the right top in figure 1.

The corresponding growth of an electrons number with height in

RREA for more mature stage is demonstrated in figure 2 where elec-

trons with energy ε > 1MeV are considered.

Remind that this cascade originates from single primary particle,
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Figure 1: Relativistic runaway electron avalanche. Red - e−, Blue -

e+, Green - γ and E = 2Ec
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Figure 2: The growth of an e− number (ε > 1MeV ) with height in the

RREA. h = 0 correspond to the center of the world volume
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which in turn is able to generate free electrons and the respective rate

of particle production is shown in figure 3. Obviously, some of the

new particles generated according figure 3 can become the seeds for

development new RREAs.
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Figure 3: Number of ionization e−’s per unit length on different al-

titudes h. Solid line - particle with ε >> mec
2, dashed - ε ∼ mec

2,

h = 0, 3, 104, 3× 104 m from top to bottom respectively

It is interesting to compare different physical situation at the ini-

tialization of a cascade. First, one can send a positron in the wold

volume with the same direction of the electric field. If the positron

has low enough energy it immediately stops due to both slowdown of

the field and ionization loses. If the positron’s energy is higher it more

effectively produces photons which are able to generate a new RREA.

Realization of this situation is shown in figure 4 a. The same picture

appears if photons generate a RREA cascade like primary particles

directly.

Second, one can inverse the field direction and send a positron to be

accelerated. Then the positron propagating in the media gains energy
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enough to more effective photoproduction and ionization, generating,

thus, return avalanche which is shown in figure 4 b.
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Figure 4: Electrons only distribution. a: primary particle - e+, ε = 30

MeV, b: primary particle - e+, ε = 10 MeV and with opposite electric

field direction - from the bottom to the top

A combination of both effects of upward electron avalanches and

downward positron stream together with respective photoproduction

due to a bremsstrahlung establish a feedback chain because of a positron

in turn is able to produce new photons and to initiate thus new avalanche

on the lower height what correspond to the inverted figure 4 b1.

As result one obtains a series of cascades which increase energetic

particles number density significantly as it is shown in figure 5.

Remind, what we traced here mostly formation and initial stage

1The importance of this feedback between different particles in a cascade was mentioned recently in [18].
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Figure 5: Particles cascade on more mature stage. Green - e+, Red - e−

E = 2 Ec

E = 10 Ec

E = 5 Ec

0 5000 10 000 15 000 20 000 25 000 30 000
10

50

100

500

1000

5000

h, m

l a
,m

Figure 6: Length scale for generation air runaway electrons avalanche

of RREA corresponding to ∆h = 2000m. The typical length scale

of a RREA breakdown generated in upper atmosphere extends up to

ionospheric height thus ∆h ≃ 50 km and for RREA breakdown starting
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above thunderclouds at h ≈ 20 km one gets ∆h/la ≥ 20÷40 where the

dependence la(h) shown in figure 6 is included. The quasistatic electric

field appeared immediately after +CG discharge has relaxation time

∼ few seconds. This indicates about the huge number of produced

particles N ∼ exp(∆h/la) ∼ 1020 [13].

It is interesting to compare la with main free path of particles be-

cause of their interactions what is shown in figures 7.
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Figure 7: Main free path of photons due to Compton scattering (a),

where γ = ε/mec
2 and electrons (b) due to bremsstrahlung with re-

spect to height in air

One can see what Compton scattering of photons at considering

height h ≃ 5 km is comparable with a characteristic length scale of

RREA generation la for small energies γ ∼ 1 and small field E ∼

2Ec. More energetic photons are less liable for interactions and for

instance if γ ∼ 100 they escape world volume without interactions. A

bremsstrahlung increases with energy instead and leads to more effec-

tive photoproduction comparable with la at h ≃ 5 km at high energies.

Obviously both effects recede at high altitudes and particles became
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free after generation at lower atmosphere. One can estimate what at

h ≃ 30 km electrons generated with no so high energies γ . 10 are

free particles with respect to bremsstrahlung and photons propagate

without collisions at γ & 10.

3 Hard spectrum of TGF

Performing simulation with sufficient statistic allow to obtain a spec-

tra of different components of a RREA which is shown in figure 8.

One can see what total energety spectrum forms mostly by photons at

low energy ε . 10MeV and by relativistic electrons in the opposite

case. Positron flux is sufficiently suppressed at the top of modeling

volume which is obvious in the framework of our simulation set up

where positrons always directed downward. Thus from inner parts of
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Figure 8: Energetic spectrum of typical runaway cascade
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atmosphere upward onto lower density slices a bremsstrahlung photons

and a runaway electrons are escaped. According to the simulation the

positrons moving along the electric field have a little chance to be

distributed in the higher atmosphere. Thus experimental evidence of

positrons space detection [6] implies that their formation is located on

the regions without electric field and what they are produced by a huge

number TGF cascade originated at the lower altitude where electric

field amplitude is sufficient to accelerate an electron beam to produce

this TGF as it is clear from interactions shown in figure 7. Thus clear

what TGF initiates in the lower atmosphere but where specifically is

the matter of discussion [19]. Difficulties come from peculiarities of

electric field generation, its dynamics and influence on the progress

of RREA. Practically all the TGF generation models exploit the idea

of RREA, but apply to different field configuration. For instance al-

ternatively to the previous mechanism, TGF can be generated by a

strong electromagnetic pulse produced by a lightning discharge [20].

Differences in these models results in varying TGF origination height

of about several kilometers.

Our modeling ascertains general picture of TGF and its relation to

the RREA. Now we are not addressing to the problem of TGF origi-

nation but look for features of the hard gamma spectrum production.

Namely, the question is about an existence of a high-energy spectral

component in addition to the well-known power low component ex-

tending up to ∼ 10 MeV. The flux dependence F (ε) ∼ ε−2.7±0.1 for

the hard component were obtained together with the registration of

photons with energy up to 100 MeV [16]. The problem is that there is

no reasonable explanation of such hard spectrum component because

of the prediction of usual TGF models according to which a ”power-

law spectrum with an exponential cutoff near 10 MeV is expected with
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characteristics that are quite independent of the conditions” [16].
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Figure 9: Spectrum of TGF produced on different heights and its low

and hard asymptotics. h correspond to the position of world volume

center

Our modeling shows some remarkable features of gamma-ray pro-

duction in RREA. First, it demonstrates an absence of such exponen-

tial cutoff in the photon spectra as it is according figure 8 at list for our

simple set up. Second, where are hard photons at energies about 100

MeV. Third, one can see an electron and a photon dominance changes

in the spectrum approximately near 10 MeV which suggests that the

hard electrons with ε > 10 MeV may be responsible for the new ad-

ditional hard gamma spectral component. Moreover, one can check

how photon spectra forms at different altitudes and conclude what

according to figure 9 low energy branch has approximately the same

inclination for all the considering heights. But high energy branch

change its inclination with altitudes and near h & 5 is close to the ob-

served value −2.7. Generally speaking the spectral index s of a hard
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gamma spectrum Fγ ∼ ε−s
γ decrease with height trying to flatten the

entire spectrum. Low energy limit s ≈ 1.8 differs from s ≈ 0.5 ob-

served in [16] and indicates what low energy photons are more intense

absorbed and scattered (see figure 7), thus to improve results one needs

to regard scale as long as the entire atmosphere.

Taking into consideration huge number of produced particles in

RREA breakdown, let us check a possibility that source of genera-

tion high energy photons is Comptonization on relativistic electrons of

RREA. Namely, one can regard a problem about an atmospheric tube

filled with energetic electrons with increasing number density. We have

a lot of radiation in the volume and interesting about the transforma-

tion of the radiation passing through this volume due to scattering by

the high electron gas inside the tube.

Strictly speaking one needs to consider a full kinetic problem in the

manner of Kompaneets equation for energetic photons interacting with

ultrarelativistic electrons and is the task for additional investigation.

Now we restrict ourselves by a simple situation. Namely, the sim-

ulation presented here allows immediately to check the possibility of

formation hard spectrum of TGF at the limits of single inverse Comp-

ton scattering on ulrtarelativistic electrons. It is known what for elec-

tron flux F (εe) = Cε−p
e where C = const, accounting the only one

Compton scattering results in transformation of initially monochro-

matic photon spectra to the form looks like synchrotron emission:

Fγ ∼ ε−s
γ , where s = (p− 1)/2 [21]. Thus if hard photons with s = 2.7

produced due to this mechanism then spectrum of an electrons will be

with p = 2s+ 1 and we obtain something like p ≃ 6.4 what obviously

disagree with electrons RREA spectra which according to figure 8 at

high energy goes approximately parallel to the photons one and thus

should be p ≃ s = 2.7. One can state what high energy photons ap-
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peared due to Comptonization process may play a negligible role at

least in simplest case and what a bremsstrahlung is a basic mechanism

for the hard photons production.

4 Conclusions

We perform numerical simulation of runaway electron breakdown in the

upper atmosphere using GEANT4 simulation toolkit. General features

of RREA are reconstructed and the feedback which arises in connec-

tions between different cascades originated from different particles is

emphasized.

Characteristics of radiations accompanying breakdown are obtained.

We can see what at least in the simple case of a ∆h ≃ 2 km and

R = 1 km cylinder filled with uniform air atmosphere and with a

thunderstorm’s electric field applied there is no strongly marked ex-

ponential cutoff in the photon spectra. Next, at the energy near 10

MeV of experimentally discovered breaking of the photon spectra elec-

trons dominates in the total particle spectrum of relativistic cascade

but hard photons at energies about 100 MeV and above are definitely

generated. We demonstrated dependance of the high energy branch

of photon spectra with respect to an altitude and find what at the

reasonable parameters hard photons have spectral index close to the

observed value. This opens up a possibility to establish a new method

to estimate a TGF generation height by future more accurate TFG

spectrum identification.

For a detailed investigation of a TGF production and propagation

one needs to take into account more realistic properties of the model

like dependence of air density on altitude, nonstationarity of an electric

field and increase a scale of modeling up to dozens of kilometers when
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particle interactions became negligible. This conditions can sufficiently

increase calculation time and require respective hardware platform. On

the other hand, for comprehensive theoretical analysis of particles in-

teractions and to establish a nature of new hard gamma component in

relativistic cascade [16] one needs to analyze kinetic equations with col-

lisional integral responsible for all relevant interactions in the manner

of [22]. The simplest estimation based on spectral shapes can strongly

suppress contribution to the hard proton production at least in the

simplest case of a single inverse Compton scattering on relativistic

electrons, but detailed analysis is a matter of further investigations.

Finally we can add what confirmation of generation hard photon

component in TGF substantiates a reconsideration of possible radia-

tion doses which are able to affect on manned aircrafts [23].
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