где $f(x,y) \in \mathbb{C}_{k+1}[x,y]$. Это также было учтено при построении системы канонических представителей пар (p,q).

Резюме. Одними из основных результатов работы являются:

- 1. Описание структуры модуля V в терминах двойственного идеала $I\subset \mathbb{C}[\partial_x,\partial_y].$
- 2. Построение системы канонических представителей пар (p,q) для всех ручных V_k .
- 3. Классификация нильпотентных аппроксимаций семейств векторных полей на многообразиях размерностей 1, 2 и 3.

Список литературы

- 1. *Аграчев А.А.*, *Сачков Ю.Л.* Геометрическая теория управления. // М., ФИЗ-МАТЛИТ, 2005.
- 2. Винберг Э.Б., Попов В.Л. Теория инвариантов // Алгебраическая геометрия 4, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 55, ВИНИТИ, М., 1989, С. 137–309.
- 3. Agrachev~A.,~Gamkrelidze~R. Local controllability and semigroups of diffeomorphisms // Acta Appl. Math., 1993. P. 1–57.
- 4. Agrachev A., Sarychev A. Filtrations of a Lie algebra of vector fields and nilponent approximation of controlled systems // Soviet. Math Dokl., 1988. Vol. 36, no. 1. P. 104–108.
- 5. $Doubrov\ B$. One-dimensional distributions on homogeneous spaces // Inst. of Math., Univ., 1994.
- 6. Jakubczyk B. Introduction to geometric nonlinear control // Summer School on Mathematical Control Theory, A.A. Agrachev ed. Trieste, International Centre for Theoretical Physics, 2002. P. 107–168.

ОБ ОЦЕНКЕ РИСКА БАНКРОТСТВА ФИРМЫ Ю.А. Пичугин¹, О.А. Малафеев²

 1 Российский государственный педагогический университет им. А.И. Герцена Казанская 6, 191186 Санкт-Петербург, Россия yury-picugin@mail.ru

² Санкт-Петербургский государственный университет Университетская наб. д. 7-9, 199034 Санкт-Петербург, Россия malafeyevoa@mail.ru

Одним из хорошо известных подходов к проблеме оценки экономической надежности предприятия и риска банкротства является метод, предложенный Э.Альтманом [1-3], который основан на построении специальной функции-критерия $\varphi(X)$, где $X^t = (x_1, x_2, x_k)$ — вектор наиболее важных экономических показателей, полученных на

основе отчетов бухгалтерии (t-) знак транспонирования). Согласно Э.Альтману $\varphi(X)$ представляет собой линейную форму $\varphi(X) = C^t X, C^t = (c_1, c_2, ..., c_k), k = 5$. При этом существуют такие два значения этой формы φ_C и $\varphi_R(\varphi_C > \varphi_R)$, что область G допустимых значений X разбивается на три непересекающиеся подобласти $G = G_C \cup G_N \cup G_R : G_C = \{X : X \in G, \varphi(X) > \varphi_C\} -$ область экономической устойчивости, $G_R = \{X : X \in G, \varphi(X) < \varphi_R\} -$ область экономической несостоятельности и G_N - область неопределенности (\cup - знак объединения). Без каких-либо ограничений общности будем считать G прямоугольной, $G = \{X : 0 \le x_i \le x_{max}, i = 1, 2, ..., k\}$ По исследованиям Э.Альтмана, значения φ_C и φ_R зависят от того, насколько акции предприятия котируются на бирже.

Оптимистично предположим, что вектор экономических показателей X подчиняется многомерному нормальному распределению с параметрами $\Theta = EX$ и $\Sigma = E(X - \Theta)(X - \Theta)^T$ (Е - знак математического ожидания) , что, в свою очередь, обычно записывается как $X - N(\Theta, \Sigma)$. Такое предположение допустимо в случаях, когда вероятностное распределение X достаточно плотно локализовано в центральной части областидопустимых значений G.

При фиксированном значении f_0 функция f(X) плотности распределения X задает в k-мерном пространстве гиперповерхность уровня, которая хорошо известна как эллипсоид рассеяния $f(X) = f_0$. Для начала выясним, при каком значении f_R этот эллипсоид риска $W_R = \{X : f(X) = f_R\}$ соприкасается с критической границей, заданной равенством $\varphi(X) = \varphi_R$, а заодно и вычислим точку прикосновения X_R . Решение этой задачи хорошо известно. Оно строится из геометрического соотношения $\operatorname{grad} f(X) = \gamma \cdot \operatorname{grad} \varphi(X)(\gamma - \operatorname{скаляр})$, означающего, что в точке касания векторы нормалей к указанным гиперповерхностям коллинеарны.

Учитывая, что плотность распределения $f(X) = f(X, \Theta, \Sigma)$ выражается формулой

$$f(X) = (2\pi)^{-k/2} det^{-1/2} \sum exp(-0, 5 \cdot (X - \Theta)^T \sum^{-1} (X - \Theta)),$$

возникающую задачу Лагранжа запишем в виде $\Sigma^{-1}(X_R - \Theta) = \lambda C, C^t X_R = \varphi_R$, следовательно,

$$\lambda = (\varphi_R - C^t \Theta)(C^t \Sigma C)^{-1}, X_R = \Theta + \lambda \Sigma C \tag{1}$$

Имея значение X_R , вероятностную оценку уровня R определяем как отношение правдоподобий точек касания и центра распределения

$$R = L(X_R) = f(X_R) \cdot f(\Theta)^{-1} = exp(-0, 5 \cdot (X_R - \Theta)^T \Sigma (X_R - \Theta)).$$
 (2)

Уровень надежности определяем аналогично, вычислив по формуле (2) величину $L(X_C)$, где X_C — вычисляется по формулам (1) при замене φ_R на φ_C . Также представляет интерес интегральная вероятностная оценка надежности $P(X:\varphi(X)>\varphi_C|X\in G)=P(X\in G_C\cap G)/P(X\in G)(\cup$ — знак пересечения) или более «жестко» — $P(X\in G\cap Int_C)/P(X\in G)$, где $Int_C=\{X:f(X)< f_C\}$ внутренность эллипсоида надежности $W_C=\{X:f(X)=f_C\}, f_C=f(X_C)$. Аналогично, интегральный риск можно определить не как $R_{Int}=P(\in G_R\cup G)/P(\in G)$, а как $R_{Int}=1-P(X\in G\cap Int_R)/P(X\in G)$, где $Int_R=\{:f(X)< f_R\}$ внутренность эллипсоида риска W_R .

В качестве значений параметров распределения Θ и Σ используются их несмещенные оценки, которые вычисляются по имеющимся наблюдениям за работой предприятия $\{X_t, t=1,2,\ldots,T\}$, T – продолжительность наблюдаемого периода.

Список литературы

- 1. Altman E. Managing Credit Risk, 2nd Edition. John Wiley and Sons, 2008.
- 2. Altman E. Corporate Financial Distress and Bankruptcy, 3rd edition. John Wiley and Sons, 2005.
- 3. Altman E. Recovery Risk. 2005.

ОБ АППРОКСИМАЦИИ СИСТЕМ С ЗАПАЗДЫВАНИЕМ И ИХ УСТОЙЧИВОСТЬ

Л.А. Поддубная, И.М. Черевко

Черновицкий национальный университет имени Юрия Федьковича, факультет прикладной математики, Коцюбинского 2, 57012 Черновцы, Украина larpi@rambler.ru, i.cherevko@chnu.edu.ua

Введение. Для линейных систем с запаздыванием условием их асимптотической устойчивости является отрицательность действительных частей корней соответствующих квазиполиномов. Вычисление корней квазиполиномов либо анализ их локализации — это достаточно сложная задача, особенно для систем высокого порядка.

В данной работе схемы аппроксимации дифференциальноразностных уравнений (ДРУ) системами обыкновенных дифференциальных уравнений (ОДУ) применяются для исследования устойчивости линейных ДРУ.