ОСНОВНЫЕ КРИТЕРИИ СОЗДАНИЯ ФЕРРОЭЛЕКТРИЧЕСКИХ КОМПОЗИ-ЦИЙ СТАБИЛЬНЫХ К МЕХАНИЧЕСКИМ ДЕФОРМАЦИЯМ

Исследовано влияние хиральных фрагментов молекул и соотношения между хиральными и не хиральными молекулами на качество ориентации и ее стабильность к механическим деформациям. Определены лучшие хиральные соединения для изготовления бездефектных ферроэлектрических композиций с широким температурным интервалом хиральной смектической фазы С*.

Анализ полученных ранее результатов позволил нам выбрать 4-коьчатые хиральные соединения и разработать нехиральную матрицу, для того чтобы оптимизировать составы смесей для создания бездефектных дисплеев с высоким оптическим контрастом [1, 2]. Так как первые наши исследования показали, что для данной цели наиболее пригодны длинные молекулы с жестким стержнем было решено синтезировать и исследовать хиральные соединения такого типа с различными хиральными фрагментами, алкильными радикалами и боковыми заместителями. Были исследованы физические параметры (температуры фазовых переходов и последовательность фаз, спонтанная поляризация и угол переключения) синтезированных соединений. Для исследования синтезированных соединений были разработаны две композиции на основе фенилпиримидинов(ВМ-1) и бифенилпиримидинов(ВМ-2). Перед тем, как оптимизировать составы композиций необходимо было решить, какие тестовые ячейки требуется изготовить для этой цели. Для данного эксперимента были выбраны пять ориентирующих материалов с различными углами преднаклона $0 - 8^{\circ}$. Эксперимент показал, что для нашей задачи необходимо изготавливать тестовые ячейки с использованием ориентирующих материалов с углом преднаклона $0-1^{\circ}$ (рисунок 1).

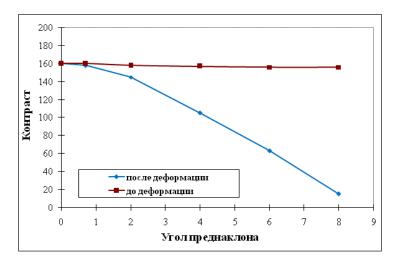


Рисунок 1. Зависимость контраста ячейки от угла преднаклона ориентирующего материала до и после механической деформации.

В результате исследования температур фазовых переходов у 120 хиральных компонент для дальнейших экспериментов были отобраны 16 соединений (таблица 1), которые характеризуются низкими температурами кристализации и наличием широкого интервала хиральной смектической С* фазы, то есть хорошей смешиваемостью с другими классами соединений, что позволит добавлять их в требуемых нам количествах в нехиральные матрицы.

Температуры фазовых переходов хиральных соединений.

$$H_{2n+1}C_n \xrightarrow{\hspace*{1cm}} OR'$$

N	n	X	R'	Температуры переходов/ °C								
				Cr		SmC		SmA		N		I
a	6	Cl	CH(CH ₃)C ₆ H ₁₃	•	44	•	85	•		-	158	•
б	6	Cl	$CH(CH_3)C_5H_{11}$	•	50	•	99	•		-	165	•
В	6	Cl	CH(CH ₃)COO CH(CH ₃)C ₆ H ₁₃	•	44	•	85	•		-	158	•
Γ	6	Cl	CH(CH ₃)COOC ₄ H ₉	•	43	•	100	•		-	150	•
Д	8	Cl	$CH(CH_3)C_6H_{13}$	•	24	•	112	•		-	155	•
ж	8	Cl	$CH(CH_3)C_5H_{11}$	•	38	•	117	•		-	151	•
3	8	Cl	CH(CH ₃)CH ₂ OCH ₃	•	61	•	115	•	168	•	172	•
И	8	CH_3	$CH(CH_3)C_6H_{13}$	•	29	•	99	•		-	140	•
К	8	CH_3	$CH(CH_3)C_5H_{11}$	•	40	•	125	•		-	160	•
Л	8	Cl	CH(CH ₃)CH ₂ OC ₃ H ₇	•	39	•	115	•		-	160	•
M	8	Cl	CH(CH ₃)OOC CH(CH ₃)CH ₃	•	43	•	78	•		-	145	•
Н	8	Cl	CH(CH ₃)COOC ₄ H ₉	•	46	•	142	•	147	•	170	•
o	10	CH_3	$CH(CH_3)C_6H_{13}$	•	47	•	119	•		-	145	•
П	10	Cl	$CH(CH_3)C_6H_{13}$	•	39	•	129	•		-	146	•
p	10	Cl	$CH(CH_3)C_5H_{11}$	•	46	•	129	•		-	157	•

То есть наиболее перспективны оказались соединения содержащие 6-10 атомов углерода в алкильном радикале, атом кислорода перед хиральным центром, а также атом хлора или метильную группу в третьем положении третьего бензольного кольца. Введение СОО-группы перед хиральным центром, а также изменение положения боковых заместителей приводило к сильному повышению температуры кристаллизации или к исчезновению хиральной смектической C^* -фазы, что естественно ухудшало растворимость данных соединений с другими классами жидкокристаллических компонент. Для вышеприведенных соединений были измерены основные физические параметры (таблица 2)

Таблина 2

Физические параметры	отдельных соединений
----------------------	----------------------

Компо- ненты	Интервал (⁰ C) С*-фазы	Спонтанная поляризация (нК/cm²)	Угол пред- наклона
1a	+45 - +85	49	32.3
16	+50 - +99	47	31.8
1в	+44 - +85	65	30.8
1г	+43 - +100	64	35.8
1д	+24 - +112	52	33.2
1ж	+38 - +117	49	32.4
1и	+29 - +99	47	28.7
1к	+40 - +125	44	28.2
1л	+39 - +115	40	27.4
1м	+43 - +78	61	29.7
1н	+46 - +142	66	36.2
10	+47 - +119	50	29.9

Как видно из таблицы 2 отобранные соединения характеризуются широким интервалом С*-фазы, требуемыми величинами спонтанной поляризации (около 50нК/см²) и угла переключения (около 30°). Вышеприведенные компоненты было решено проверить на возможность использования их при разработке композиций стабильных к механическим деформациям. Для данной цели в базовые матрицы ВМ-1 или ВМ-2 было

добавлен 30% хиральных соединений и исследованы на стабильность к механическим деформациям.

Все тестовые ячейки заправленные приготовленными композициями переключались хорошо и изначально характеризовались хорошим качеством ориентации и высоким контрастом (140:1 — 180:1). Но после сильного механического воздействия на многих ячейках качество ориентации ухудшалось, так как появлялись дефекты связанные с ломкой слоев и естественно контраст на таких ячейках падал до 30:1. И только в ячейках заправленных композициями на основе базовой матрицы ВМ-1 и содержащих соединения 1г, 1д, 1и и 1н качество ориентации не ухудшалось после механического воздействия и контраст оставался без изменений. Для композиций на основе этих соединений были проведены исследования температурных зависимостей спонтанной поляризации и угла переключения, которые показали, что данные параметры практически не изменяются в широком температурном интервале от 0° до 90°С, что позволит создавать бездефектные композиции, работающие стабильно в широком температурном интервале, что является необходимым требованием для практической реализации данного эффекта.

Анализ полученных результатов позволил выработать основные критерии формирования бездефектных смектических слоев стабильных к механическим деформациям.

Список литературы

- 1. Lapanik, V. XRD study of new FLC's correlation between the chemical structure of molecules, the sign of the optical rotation and the tilt angle [Text] / V.Bezborodov, A.Lapanik, W.Haase // Ferroelectrics. 2006. V.343. P. 127.
- Lapanik, V. Defect-free FLCD's with high optical quality based upon new FLS's[Text] / V. Bezborodov, A.Minko, G.Sasnouski, W.Haase, A.Lapanik // Ferroelectrics. 2006. V.344. P. 205.

The influence of chiral molecule fragments and the ratio between chiral and non-chiral molecules on the quality of the orientation and stability against mechanical deformation. The best chiral compounds have been determined for the preparation of defect-free ferroelectric compositions with a wide temperature range of the chiral smectic C*- phase.

Лапаник В.И., зав. лабораторией НИИПФП им. А.Н.Севченко БГУ, Минск, Беларусь, e-mail: lapanik@bsu.by.

Безбородов В.С., профессор БГТУ, д.х.н, профессор, Минск, Беларусь, e-mail: v bezborodov@yahoo.com.

Минько А.А., зав. кафедрой БГУ, д.ф.-м.н, профессор, Минск, Беларусь. e-mail: optics@bsu.by.

Cосновский Γ .M., с.н.с. НИИПФП им. А.Н.Севченко БГУ, к.х.н., Минск, Беларусь, e-mail: g_sasnouski@yahoo.com.